Responda:
Explicação:
Deixe os inteiros serem
Então, de acordo com o problema,
Então, os inteiros são
Responda:
Explicação:
# "deixa um inteiro" = n #
# "então um inteiro consecutivo" = n + 1 #
# rArrn + n + 1 = 679 #
# rArr2n + 1 = 679 #
# "subtrair 1 de ambos os lados" #
# rArr2n = 678 #
# "dividir ambos os lados por 2" #
# rArrn = 678/2 = 339 #
# rArrn + 1 = 339 + 1 = 340 #
# "os 2 inteiros consecutivos são" 339 "e" 340 #
Responda:
Explicação:
Seja n qualquer inteiro, então o próximo número inteiro consecutivo é 1 maior.
A soma é 679
Simplificando:
Subtraia 1 de ambos os lados:
Divida os dois lados por 2:
Nós temos:
Nosso número é:
O produto de dois inteiros ímpares consecutivos é 29 menor que 8 vezes sua soma. Encontre os dois inteiros. Resposta na forma de pontos emparelhados com o mais baixo dos dois inteiros primeiro?
(13, 15) ou (1, 3) Sejam x e x + 2 os números ímpares consecutivos, então Conforme a pergunta, temos (x) (x + 2) = 8 (x + x + 2) - 29 : x ^ 2 + 2x = 8 (2x + 2) - 29:. x ^ 2 + 2x = 16x + 16 - 29:. x ^ 2 + 2x - 16x - 16 + 29 = 0:. x ^ 2 - 14x + 13 = 0:. x ^ 2 -x - 13x + 13 = 0:. x (x - 1) - 13 (x - 1) = 0:. (x - 13) (x - 1) = 0:. x = 13 ou 1 Agora, CASO I: x = 13:. x + 2 = 13 + 2 = 15:. Os números são (13, 15). CASO II: x = 1:. x + 2 = 1+ 2 = 3:. Os números são (1, 3). Portanto, como há dois casos sendo formados aqui; o par de números pode ser ambos (13, 15) ou (1, 3).
Conhecendo a fórmula para a soma dos N inteiros a) qual é a soma dos primeiros N inteiros quadrados consecutivos, Sigma_ (k = 1) ^ N k ^ 2 = 1 ^ 2 + 2 ^ 2 + cdots + (N-1 ) ^ 2 + N ^ 2? b) Soma dos primeiros N inteiros do cubo consecutivos Sigma_ (k = 1) ^ N k ^ 3?
Para S_k (n) = soma_ {i = 0} ^ ni ^ k S_1 (n) = (n (n + 1)) / 2 S_2 (n) = 1/6 n (1 + n) (1 + 2 n ) S_3 (n) = ((n + 1) ^ 4- (n + 1) -6S_2 (n) -4S_1 (n)) / 4 Temos sum_ {i = 0} ^ ni ^ 3 = sum_ {i = 0} ^ n (i + 1) ^ 3 - (n + 1) ^ 3 sum_ {i = 0} ^ ni ^ 3 = sum_ {i = 0} ^ ni ^ 3 + 3sum_ {i = 0} ^ ni ^ 2 + 3sum_ {i = 0} ^ ni + sum_ {i = 0} ^ n 1- (n + 1) ^ 3 0 = 3sum_ {i = 0} ^ ni ^ 2 + 3sum_ {i = 0} ^ ni + sum_ {i = 0} ^ n 1- (n + 1) ^ 3 resolvendo para sum_ {i = 0} ^ ni ^ 2 sum_ {i = 0} ^ ni ^ 2 = (n + 1) ^ 3 / 3- (n + 1) / 3-sum_ {i = 0} ^ ni mas sum_ {i = 0} ^ ni = ((n + 1) n) / 2 então sum_ {i = 0} ^ ni ^ 2 = (n +1) ^
"Lena tem dois inteiros consecutivos.Ela percebe que sua soma é igual à diferença entre seus quadrados. Lena pega outros 2 inteiros consecutivos e percebe a mesma coisa. Prove algebricamente que isso é verdade para quaisquer 2 inteiros consecutivos?
Por favor, consulte a Explicação. Lembre-se de que os inteiros consecutivos diferem em 1. Portanto, se m for um inteiro, então, o número inteiro seguinte deve ser n + 1. A soma desses dois inteiros é n + (n + 1) = 2n + 1. A diferença entre seus quadrados é (n + 1) ^ 2-n ^ 2, = (n ^ 2 + 2n + 1) -n ^ 2, = 2n + 1, como desejado! Sinta a alegria das matemáticas.