Responda:
Explicação:
O centro do círculo é o ponto médio do diâmetro, isto é
Mais uma vez, o diâmetro é a distância entre os pontos s
então o raio é
Assim, a forma padrão da equação de círculos é
A equação x ^ 2 + y ^ 2 = 25 define um círculo na origem e no raio de 5. A linha y = x + 1 passa pelo círculo. Quais são os pontos nos quais a linha intercepta o círculo?
Existem 2 pontos de intrersecção: A = (- 4; -3) e B = (3; 4) Para descobrir se há algum ponto de interseção, você deve resolver o sistema de equações incluindo as equações de círculo e linha: {(x ^ 2 + y ^ 2 = 25), (y = x + 1):} Se você substituir x + 1 por y na primeira equação, terá: x ^ 2 + (x + 1) ^ 2 = 25 x ^ 2 + x ^ 2 + 2x + 1 = 25 2x ^ 2 + 2x-24 = 0 Agora você pode dividir ambos os lados por 2 x ^ 2 + x-12 = 0 Delta = 1 ^ 2-4 * 1 * (- 12) Delta = 1 + 48 = 49 sqrt (Delta) = 7 x_1 = (- 1-7) / 2 = -4 x_2 = (- 1 + 7) / 2 = 3 Agora temos que
O círculo A tem um raio de 2 e um centro de (6, 5). O círculo B tem um raio de 3 e um centro de (2, 4). Se o círculo B é traduzido por <1, 1>, ele se sobrepõe ao círculo A? Se não, qual é a distância mínima entre pontos em ambos os círculos?
"círculos se sobrepõem"> "o que temos que fazer aqui é comparar a distância (d)" "entre os centros à soma dos raios" • "se soma dos raios"> d "então círculos se sobrepõem" • "se soma de raios "<d" depois não há sobreposição "" antes do cálculo d precisamos encontrar o novo centro "" de B após a tradução dada "" sob a tradução "<1,1> (2,4) para (2 + 1, 4 + 1) a (3,5) larro (vermelho) "novo centro de B" "para
Pontos (–9, 2) e (–5, 6) são pontos finais do diâmetro de um círculo Qual é o comprimento do diâmetro? Qual é o ponto central C do círculo? Dado o ponto C encontrado na parte (b), indique o ponto simétrico para C em torno do eixo x
D = sqrt (32) = 4sqrt (2) ~~ 5.66 center, C = (-7, 4) ponto simétrico sobre o eixo x: (-7, -4) Dado: pontos finais do diâmetro de um círculo: (- 9, 2), (-5, 6) Use a fórmula de distância para encontrar o comprimento do diâmetro: d = sqrt ((y_2 - y_1) ^ 2 + (x_2 - x_1) ^ 2) d = sqrt ((- 9 - -5) ^ 2 + (2 - 6) ^ 2) = sqrt (16 + 16) = sqrt (32) = sqrt (16) sqrt (2) = 4 sqrt (2) ~~ 5.66 Use a fórmula do ponto médio para encontre o centro: ((x_1 + x_2) / 2, (y_1 + y_1) / 2): C = ((-9 + -5) / 2, (2 + 6) / 2) = (-14/2, 8/2) = (-7, 4) Use a regra de coordenadas para reflexão sobre o eixo