Qual é a área de um paralelogramo com cantos em (-2, -1), (-12, -4), (9, -4), (-1, -7)?

Qual é a área de um paralelogramo com cantos em (-2, -1), (-12, -4), (9, -4), (-1, -7)?
Anonim

Responda:

Área de paralelogramo é #63#

Explicação:

Este é um paralelogramo com pontos como

#A (-2, -1), B (-12, -4), C (-1, -7), D (9, -4) #

e # AB #||# DC # e #DE ANÚNCIOS#||# BC #

Área de # DeltaABC # é

#1/2((-2)(-4-(-7)+(-12)(-7-(-1))+(-1)(-1-(-4)))#

= # 1/2 ((- 2) xx3 + (- 12) xx (-6) + (- 1) xx3) #

= # 1/2 (-6 + 72-3) = 1 / 2xx63 #

Assim, a área do paralelogramo é #63#