Responda:
Ver abaixo
Explicação:
A prova de coordenadas é uma prova algébrica de um teorema geométrico. Em outras palavras, usamos números (coordenadas) em vez de pontos e linhas.
Em alguns casos, para provar um teorema algebricamente, usando coordenadas, é mais fácil do que apresentar uma prova lógica usando os teoremas da geometria.
Por exemplo, vamos provar usando o método de coordenadas, o Teorema da Linha Média, que afirma:
Os pontos médios dos lados de qualquer quadrilátero formam um paralelogramo.
Deixe quatro pontos
Ponto médio
Ponto médio
Ponto médio
Ponto médio
Vamos provar isso
Como podemos ver, as encostas de
Analogamente, encostas de
Então, nós provamos que lados opostos do quadrilátero
A função p = n (1 + r) ^ t dá a população atual de uma cidade com uma taxa de crescimento de r, t anos após a população ser n. Qual função pode ser usada para determinar a população de qualquer cidade que tivesse uma população de 500 pessoas há 20 anos?
População seria dada por P = 500 (1 + r) ^ 20 Como a população há 20 anos era 500 taxa de crescimento (da cidade é r (em frações - se é r% torná-lo r / 100) e agora (ou seja, 20 anos depois, a população seria dada por P = 500 (1 + r) ^ 20
O par ordenado (2, 10), é uma solução de uma variação direta, como você escreve a equação de variação direta, então graficamente sua equação e mostra que a inclinação da linha é igual à constante de variação?
Y = 5x "dado" ypropx "then" y = kxlarrcolor (azul) "equação para variação direta" "onde k é a constante de variação" "para encontrar k use o ponto de coordenada dado" (2,10) y = kxrArrk = y / x = 10/2 = 5 "equação é" cor (vermelho) (barra (ul (| cor (branco) (2/2) cor (preto) (y = 5x) cor (branco) (2/2) |))) y = 5x "tem a forma" y = mxlarrcolor (azul) "m é a inclinação" rArry = 5x "é uma linha reta passando pela origem" "com declive m = 5" graph {5x [-10 ,
O vetor de posição de A tem as coordenadas cartesianas (20,30,50). O vetor de posição de B tem as coordenadas cartesianas (10,40,90). Quais são as coordenadas do vetor de posição de A + B?
<30, 70, 140> When adding vectors, simply add the coordinates. A+B=<20, 30, 50> + <10, 40, 90> =<20+10, 30+40, 50+90> = <30, 70, 140>