Responda:
O quarto termo é
Explicação:
Vamos usar a expansão Binomial de
Pela série de Taylor,
Então, o quarto termo é
Substituindo
O 20º termo de uma série aritmética é log20 e o 32º termo é log32. Exatamente um termo na sequência é um número racional. Qual é o número racional?
O décimo termo é log10, que é igual a 1. Se o 20º termo for log 20 e o 32º termo for log32, então o décimo termo é log10. Log10 = 1. 1 é um número racional. Quando um log é escrito sem uma "base" (o subscrito após o log), uma base de 10 está implícita. Isso é conhecido como "log comum". A base de log 10 de 10 é igual a 1, porque 10 a primeira potência é uma. Uma coisa útil para lembrar é "a resposta para um log é o expoente". Um número racional é um número que pode ser expres
O quarto termo de um AP é igual a três vezes que o sétimo termo excede o dobro do terceiro termo por 1. Encontre o primeiro termo e a diferença comum?
A = 2/13 d = -15/13 T_4 = 3 T_7 ......... (1) T_4 - 2T_3 = 1 ........ (2) T_n = a + (n- 1) d T_4 = a + 3d T_7 = a + 6d T_3 = a + 2d Substituindo valores na equação (1), a + 3d = 3a + 18d = 2a + 15d = 0 .......... .... (3) Substituindo valores na equação (2), a + 3d - (2a + 4d) = 1 = a + 3d - 2a - 4d = 1 - a - d = 1 a + d = -1. ........... (4) Ao resolver as equações (3) e (4) simultaneamente, obtemos d = 2/13 a = -15/13
Se a soma do coeficiente de 1º, 2º e 3º termo da expansão de (x2 + 1 / x) aumentada para a potência m for 46, então encontre o coeficiente dos termos que não contém x?
Primeiro encontre m. Os primeiros três coeficientes serão sempre ("_0 ^ m) = 1, (" _1 ^ m) = m, e ("_2 ^ m) = (m (m-1)) / 2. A soma destes simplifica para m ^ 2/2 + m / 2 + 1. Ajuste este valor para 46, e resolva para m m 2/2 + m / 2 + 1 = 46 m ^ 2 + m + 2 = 92 m ^ 2 + m - 90 = 0 (m + 10) (m - 9) = 0 A única solução positiva é m = 9. Agora, na expansão com m = 9, o termo x ausente deve ser o termo contendo (x ^ 2) ^ 3 (1 / x) ^ 6 = x ^ 6 / x ^ 6 = 1 Este termo tem um coeficiente de ("_6 ^ 9) = 84. A solução é 84.