Responda:
= graph {x = y -10, 10, -5, 5}
Explicação:
faça uma tabela em duas colunas, primeira coluna para valores x
segunda coluna para valores de y
em seguida, escolha valores para xe substitua-o na equação para encontrar o valor y
gostar:
x | y
0 | 0
1 | 1
2 | 2
3 | 3
-1 | -1
aqui eles são equivalentes por causa de x = y, mas em outras equações eles serão diferentes.
Então apenas plote-os no sistema de coordenadas e conecte o ponto e você obterá o gráfico da equação
gráfico {x = y -10, 10, -5, 5}
Suponha que você esteja iniciando um serviço de limpeza de escritório. Você gastou $ 315 em equipamentos. Para limpar um escritório, você usa US $ 4 em suprimentos. Você cobra US $ 25 por escritório. Quantos escritórios você deve limpar para empatar?
Número de escritórios a serem limpos para cobrir o custo do equipamento = 15 Custo do equipamento = $ 315 Custo dos suprimentos = $ 4 Custo por escritório = $ 25 Número de escritórios a serem limpos para cobrir o custo do equipamento = x Então - 25x-4x = 315 21x = 315 x = 315/21 = 15 Número de escritórios a serem limpos para cobrir o custo do equipamento = 15
O primeiro e o segundo termos de uma sequência geométrica são respectivamente o primeiro e o terceiro termos de uma sequência linear. O quarto termo da sequência linear é 10 e a soma dos seus cinco primeiros termos é 60 Encontre os primeiros cinco termos da sequência linear?
{16, 14, 12, 10, 8} Uma sequência geométrica típica pode ser representada como c_0a, c_0a ^ 2, cdots, c_0a ^ k e uma sequência aritmética típica como c_0a, c_0a + Delta, c_0a + 2Delta, cdots, c_0a + kDelta Chamando c_0 a como o primeiro elemento para a sequência geométrica que temos {(c_0 a ^ 2 = c_0a + 2Delta -> "Primeiro e segundo de GS são o primeiro e o terceiro de um LS"), (c_0a + 3Delta = 10- > "O quarto termo da seqüência linear é 10"), (5c_0a + 10Delta = 60 -> "A soma do seu primeiro cinco termo é 60"):} Resolven
Você está dirigindo para um local de férias que é de 1500 quilômetros de distância. Incluindo paradas para descanso, você leva 42 horas para chegar lá. Você estima que você dirigiu a uma velocidade média de 50 quilômetros por hora. Quantas horas você não estava dirigindo?
12 horas Se você pode dirigir 50 milhas em 1 hora, o número de horas necessárias para dirigir 1.500 milhas seria de 1500/50 ou 30 horas. 50x = 1500 rarr x representa o número de horas que demorou a conduzir 1500 milhas 42 é o número total de horas e o número total de horas gastas a conduzir é de 30 42-30 = 12