Responda:
O mínimo absoluto é
O máximo absoluto é
Explicação:
Os extremos absolutos de uma função são os maiores e menores valores y da função em um determinado domínio. Este domínio pode ser dado a nós (como neste problema) ou pode ser o domínio da função em si. Mesmo quando nos é dado o domínio, devemos considerar o domínio da função em si, no caso de excluir quaisquer valores do domínio que nos são dadas.
No entanto, ainda precisamos considerar o fato de que o denominador não pode ser igual a zero. O denominador será igual a zero quando
Então, nos voltamos para encontrar os extremos absolutos em
Se nós fatoramos
Não há valores de
Usando o "teste de candidatos", encontramos os valores de
Uma verificação rápida em nossas calculadoras mostra que:
Quais são os extremos absolutos?
Se uma função tem um máximo absoluto em x = b, então f (b) é o maior valor que f pode atingir. Uma função f tem um máximo absoluto em x = b se f (b) f (x) para todo x no domínio de f.
Quais são os extremos absolutos de f (x) = x ^ 3 - 3x + 1 em [0,3]?
Em [0,3], o máximo é 19 (em x = 3) e o mínimo é -1 (em x = 1). Para encontrar os extremos absolutos de uma função (contínua) em um intervalo fechado, sabemos que os extremos devem ocorrer em qualquer número crético no intervalo ou nos pontos finais do intervalo. f (x) = x ^ 3-3x + 1 tem derivada f '(x) = 3x ^ 2-3. 3x ^ 2-3 nunca é indefinido e 3x ^ 2-3 = 0 em x = + - 1. Como -1 não está no intervalo [0,3], descartamos. O único número crítico a ser considerado é 1. f (0) = 1 f (1) = -1 ef (3) = 19. Assim, o máximo é 19 (em x = 3) e
Quais são os extremos absolutos de f (x) = (x ^ 3-7x ^ 2 + 12x-6) / (x-1) em [1,4]?
Não há máximos globais. O mínimo global é -3 e ocorre em x = 3. f (x) = (x ^ 3 - 7x ^ 2 + 12x - 6) / (x - 1) f (x) = ((x - 1) (x ^ 2 - 6x + 6)) / (x - 1) f (x) = x ^ 2 - 6x + 6, onde x 1 f '(x) = 2x - 6 O extremo absoluto ocorre em um ponto final ou no número crítico. Pontos finais: 1 e 4: x = 1 f (1): "indefinido" lim_ (x 1) f (x) = 1 x = 4 f (4) = -2 ponto (s) crítico (s): f '(x) = 2x - 6 f '(x) = 0 2x - 6 = 0, x = 3 Em x = 3 f (3) = -3 Não há maximos globais. Não há mínimos globais é -3 e ocorre em x = 3.