Responda:
Os zeros estarão em
Explicação:
Quando um polinômio já é fatorado, como no caso acima, encontrar os zeros é trivial.
Obviamente, se qualquer um dos termos entre parênteses for zero, todo o produto será zero. Então os zeros estarão em:
etc.
A forma geral é se:
então um zero está em:
Então nossos zeros estarão em
O gráfico da função f (x) = (x + 2) (x + 6) é mostrado abaixo. Qual afirmação sobre a função é verdadeira? A função é positiva para todos os valores reais de x, onde x> -4. A função é negativa para todos os valores reais de x onde –6 <x <–2.
A função é negativa para todos os valores reais de x onde –6 <x <–2.
Os zeros de uma função f (x) são 3 e 4, enquanto os zeros de uma segunda função g (x) são 3 e 7. Quais são os zero (s) da função y = f (x) / g (x )
Somente zero de y = f (x) / g (x) é 4. Como zeros de uma função f (x) são 3 e 4, isso significa que (x-3) e (x-4) são fatores de f (x ). Além disso, os zeros de uma segunda função g (x) são 3 e 7, o que significa que (x-3) e (x-7) são fatores de f (x). Isso significa na função y = f (x) / g (x), embora (x-3) deva cancelar o denominador g (x) = 0 não está definido, quando x = 3. Também não é definido quando x = 7. Por isso, temos um buraco em x = 3. e somente zero de y = f (x) / g (x) é 4.
Quais são as características do gráfico da função f (x) = (x + 1) ^ 2 + 2? Marque todos que se aplicam. O domínio é todos os números reais. O intervalo é todos os números reais maiores ou iguais a 1. O intercepto y é 3. O gráfico da função é de 1 unidade para cima e
Primeiro e terceiro são verdadeiros, segundo é falso, quarto é inacabado. - O domínio é de fato todos os números reais. Você pode reescrever esta função como x ^ 2 + 2x + 3, que é um polinômio, e como tal tem domínio mathbb {R} O intervalo não é todo o número real maior ou igual a 1, porque o mínimo é 2. Em facto. (x + 1) ^ 2 é uma tradução horizontal (uma unidade à esquerda) da parábola "padrão" x ^ 2, que tem faixa [0, infty]. Quando você adiciona 2, você desloca o gráfico verticalme