Responda:
Explicação:
Responda:
Explicação:
A escola de Krisha fica a 64 km de distância. Ela dirigiu a uma velocidade de 40 mph (milhas por hora) durante a primeira metade da distância, depois a 60 mph durante o resto da distância. Qual foi a velocidade média dela durante toda a viagem?
V_ (avg) = 48 "mph" Vamos dividir isso em dois casos, o primeiro e o segundo tempo de viagem Ela dirige a distância s_1 = 20, com a velocidade v_1 = 40 Ela dirige a distância s_2 = 20, com a velocidade v_2 = 60 O tempo para cada caso deve ser dado por t = s / v O tempo que leva para conduzir a primeira metade: t_1 = s_1 / v_1 = 20/40 = 1/2 O tempo que leva para conduzir a segunda metade: t_2 = s_2 / v_2 = 20/60 = 1/3 A distância total e o tempo devem ser respectivamente s_ "total" = 40 t_ "total" = t_1 + t_2 = 1/2 + 1/3 = 5/6 A velocidade média v_ ( avg) = s_ "total&qu
Shawna notou que a distância de sua casa até o oceano, que fica a 40 milhas, era um quinto da distância de sua casa até as montanhas. Como você escreve e resolve uma equação de divisão para encontrar a distância entre a casa de Shawna e as montanhas?
A equação que você quer é 40 = 1/5 xe a distância para as montanhas é de 200 milhas. Se deixarmos x representar a distância para as montanhas, o fato de que 40 milhas (para o oceano) é um quinto da distância para as montanhas é escrito 40 = 1/5 x Observe que a palavra "de" geralmente se traduz em " multiplique "em álgebra. Multiplique cada lado por 5: 40xx5 = x x = 200 milhas
Qual é a distância entre as seguintes coordenadas polares ?: (4, pi), (5, pi)
1 A fórmula da distância para coordenadas polares é d = sqrt (r_1 ^ 2 + r_2 ^ 2-2r_1r_2Cos (theta_1-theta_2) Onde d é a distância entre os dois pontos, r_1 e theta_1 são as coordenadas polares de um ponto e r_2 e theta_2 são as coordenadas polares de outro ponto Let (r_1, theta_1) representam (4, pi) e (r_2, theta_2) representam (5, pi), implica d = sqrt (4 ^ 2 + 5 ^ 2-2 * 4 * 5Cos (pi-pi) implica d = sqrt (16 + 25-40Cos (0) implica d = sqrt (41-40 * 1) = sqrt (41-40) = sqrt (1) = 1 implica d = 1 a distância entre os pontos dados é 1.