Ondas com uma frequência de 2,0 hertz são geradas ao longo de uma string. As ondas têm um comprimento de onda de 0,50 metros. Qual é a velocidade das ondas ao longo da corda?
Use a equação v = flambda. Nesse caso, a velocidade é de 1,0 ms ^ -1. A equação que relaciona estas grandezas é v = flambda onde v é a velocidade (ms ^ -1), f é a freqüência (Hz = s ^ -1) e lambda é o comprimento de onda (m).
Uma perna de um triângulo retângulo é 8 milímetros mais curta que a perna mais longa e a hipotenusa é 8 milímetros mais longa que a perna mais longa. Como você encontra os comprimentos do triângulo?
24 mm, 32 mm e 40 mm Chamada x perna curta Chame a perna longa Chame a hipotenusa Obtemos essas equações x = y - 8 h = y + 8. Aplique o teorema de Pitágoras: h ^ 2 = x ^ 2 + y ^ 2 (y + 8) ^ 2 = y ^ 2 + (y - 8) ^ 2 Desenvolver: y ^ 2 + 16y + 64 = y ^ 2 + y ^ 2 - 16y + 64 y ^ 2 - 32y = 0 y (y - 32) = 0 -> y = 32 mm x = 32 - 8 = 24 mm h = 32 + 8 = 40 mm Verifique: (40) ^ 2 = (24) ^ 2 + (32) ^ 2 ESTÁ BEM.
As ondas S viajam a cerca de 60% da velocidade das ondas P. As ondas P viajam a cerca de 6,1 km / s. Qual é a velocidade das ondas S?
= 3,66km / s Para encontrar 60% de um número, nós o multiplicamos por 0,6, o que é 60% como um decimal. Nesse caso, nossa resposta seria: 60% de 6,1 = 6,1 * 0,6 = 3,66km / s Não esqueça de unidades