Responda:
Sim seu direito, o ponto correspondente seria
Explicação:
Porque você está multiplicando o argumento da função (o
Espero que ajude:)
O gráfico de uma equação linear contém os pontos (3.11) e (-2,1). Qual ponto também está no gráfico?
(0, 5) [intercepto y], ou qualquer ponto no gráfico abaixo Primeiro, encontre o declive com dois pontos usando esta equação: (Y_2 - Y_1) / (X_2 - X_1) = m, o declive Rótulo seu pedido pares. (3, 11) (X_1, Y_1) (-2, 1) (X_2, Y_2) Conecte suas variáveis. (1 - 11) / (- 2 - 3) = m Simplifique. (-10) / (- 5) = m Como dois negativos dividem para fazer um positivo, sua resposta será: 2 = m Parte Dois Agora, use a fórmula de declive do ponto para descobrir qual é a sua equação em y = mx + b form é: y - y_1 = m (x - x_1) Conecte suas variáveis. y - 11 = 2 (x - 3) Distribui
O ponto (-12, 4) está no gráfico de y = f (x). Encontre o ponto correspondente no gráfico de y = g (x)? (Consulte abaixo)
(-12,2) (-10,4) (12,4) (-3,4) (-12,16) (-12, -4) 1: Dividindo a função por 2 divide todos os valores de y por 2 também. Então, para obter o novo ponto, tomaremos o valor y (4) e dividiremos por 2 para obter 2. Portanto, o novo ponto é (-12,2) 2: Subtrair 2 da entrada da função faz com que todos dos valores x aumentam em 2 (para compensar a subtração). Nós precisaremos adicionar 2 ao valor x (-12) para obter -10. Portanto, o novo ponto é (-10, 4) 3: Fazer a entrada da função negativa irá multiplicar cada valor x por -1. Para obter o novo ponto, tomaremos
Um contêiner tem um volume de 5 L e contém 1 mol de gás. Se o contêiner é expandido de forma que seu novo volume seja de 12 L, quantas moles de gás devem ser injetadas no contêiner para manter uma temperatura e pressão constantes?
2,4 mol Vamos usar a lei de Avogadro: v_1 / n_1 = v_2 / n_2 O número 1 representa as condições iniciais e o número 2 representa as condições finais. • Identifique suas variáveis conhecidas e desconhecidas: cor (rosa) ("Conhecidos:" v_1 = 5 L v_2 = 12 L n_1 = 1 cor molar (verde) ("Desconhecidos:" n_2 • Reorganize a equação para resolver o número final de moles: n_2 = (v_2xxn_1) / v_1 • Conecte seus valores dados para obter o número final de moles: n_2 = (12cancelLxx1mol) / (5 cancel "L") = 2,4 mol