A área de um triângulo equilátero com lados a é
Responda:
Área é igual a
Explicação:
Considere um triângulo equilátero
A área deste triângulo é
Todos os seus lados são dados e iguais a
sua altitude
Deixe a base da altitude do vértice
Portanto, o outro par de catetos,
Agora a altitude
do qual
Agora a área do triângulo
Responda:
16
Explicação:
Área do triângulo equilátero =
Nesta situação, Area =
=
=
= 16
O comprimento de cada lado de um triângulo equilátero é aumentado em 5 polegadas, portanto, o perímetro é agora de 60 polegadas. Como você escreve e resolve uma equação para encontrar o comprimento original de cada lado do triângulo equilátero?
Eu encontrei: 15 "em" Vamos chamar o comprimento original x: Aumentar de 5 "em" nos dará: (x + 5) + (x + 5) + (x + 5) = 60 3 (x + 5) = 60 rearranjando: x + 5 = 60/3 x + 5 = 20 x = 20-5 x = 15 "in"
Um triângulo é isósceles e agudo. Se um ângulo do triângulo mede 36 graus, qual é a medida do maior ângulo (s) do triângulo? Qual é a medida do menor ângulo (s) do triângulo?
A resposta a essa pergunta é fácil, mas requer algum conhecimento geral matemático e senso comum. Triângulo Isósceles: - Um triângulo cujos únicos dois lados são iguais é chamado triângulo isósceles. Um triângulo isósceles também tem dois anjos iguais. Triângulo Agudo: - Um triângulo cujos anjos são maiores que 0 ^ @ e menores que 90 ^ @, ou seja, todos os anjos são agudos é chamado de triângulo agudo. O triângulo dado tem um ângulo de 36 ^ e é tanto isósceles quanto agudo. implica que este triângulo
Um triângulo tem vértices A, B e C.O vértice A tem um ângulo de pi / 2, o vértice B tem um ângulo de (pi) / 3 e a área do triângulo é 9. Qual é a área do círculo do triângulo?
Círculo inscrito Área = 4,37405 "" unidades quadradas Resolva os lados do triângulo usando a área especificada = 9 e os ângulos A = pi / 2 e B = pi / 3. Use as seguintes fórmulas para Área: Área = 1/2 * a * b * sin C Área = 1/2 * b * c * sin A Área = 1/2 * a * c * sin B para que tenhamos 9 = 1 / 2 * a * b * sin (pi / 6) 9 = 1/2 * b * c * sin (pi / 2) 9 = 1/2 * a * c * sin (pi / 3) solução simultânea usando essas equações resultará em a = 2 * raiz4 108 b = 3 * raiz4 12 c = raiz4 108 resolve metade do perímetro ss = (a + b + c) /2=