Responda:
Explicação:
#g (x) "é definido para todos os valores reais de x, exceto o valor" #
# "que faz o denominador igual a zero" #
# "igualar o denominador a zero e resolver dá o" #
# "valor que x não pode ser" #
# "solve" x + 1 = 0rArrx = -1larrcolor (vermelho) "valor excluído" #
#rArr "domain is" x inRR, x! = - 1 #
# "para encontrar quaisquer valores excluídos no intervalo, reorganize y = g (x)" #
# "fazendo x o assunto" #
#rArry (x + 1) = x-3 #
# rArrxy + y = x-3 #
# rArrxy-x = -3-y #
#rArrx (y-1) = - (3 + y) #
#rArrx = - (3 + y) / (y-1) #
# "o denominador não pode ser igual a zero" #
# "solve" y-1 = 0rArry = 1larrcolor (vermelho) "valor excluído" #
#rArr "intervalo é" y inRR, y! = 1 #
A função p = n (1 + r) ^ t dá a população atual de uma cidade com uma taxa de crescimento de r, t anos após a população ser n. Qual função pode ser usada para determinar a população de qualquer cidade que tivesse uma população de 500 pessoas há 20 anos?
População seria dada por P = 500 (1 + r) ^ 20 Como a população há 20 anos era 500 taxa de crescimento (da cidade é r (em frações - se é r% torná-lo r / 100) e agora (ou seja, 20 anos depois, a população seria dada por P = 500 (1 + r) ^ 20
O gráfico da função f (x) = (x + 2) (x + 6) é mostrado abaixo. Qual afirmação sobre a função é verdadeira? A função é positiva para todos os valores reais de x, onde x> -4. A função é negativa para todos os valores reais de x onde –6 <x <–2.
A função é negativa para todos os valores reais de x onde –6 <x <–2.
Os zeros de uma função f (x) são 3 e 4, enquanto os zeros de uma segunda função g (x) são 3 e 7. Quais são os zero (s) da função y = f (x) / g (x )
Somente zero de y = f (x) / g (x) é 4. Como zeros de uma função f (x) são 3 e 4, isso significa que (x-3) e (x-4) são fatores de f (x ). Além disso, os zeros de uma segunda função g (x) são 3 e 7, o que significa que (x-3) e (x-7) são fatores de f (x). Isso significa na função y = f (x) / g (x), embora (x-3) deva cancelar o denominador g (x) = 0 não está definido, quando x = 3. Também não é definido quando x = 7. Por isso, temos um buraco em x = 3. e somente zero de y = f (x) / g (x) é 4.