Responda:
Explicação:
# 3 + i = sqrt (10) (cos (alfa) + i sin (alfa)) # Onde#alpha = arctan (1/3) #
assim
#root (3) (3 + i) = raiz (3) (sqrt (10)) (cos (alfa / 3) + i sin (alfa / 3)) #
# = raiz (6) (10) (cos (1/3 arctan (1/3)) + i sin (1/3 arctan (1/3))) #
# = raiz (6) (10) cos (1/3 arctan (1/3)) + raiz (6) (10) sin (1/3 arctan (1/3)) i #
Desde a
As outras duas raízes cúbicas de
#omega (raiz (6) (10) cos (1/3 arctan (1/3)) + raiz (6) (10) sin (1/3 arctan (1/3)) i) #
# = raiz (6) (10) cos (1/3 arctan (1/3) + (2pi) / 3) + raiz (6) (10) sin (1/3 arctan (1/3) + (2pi) / 3) eu #
# omega ^ 2 (raiz (6) (10) cos (1/3 arctan (1/3)) + raiz (6) (10) sin (1/3 arctan (1/3)) i) #
# = raiz (6) (10) cos (1/3 arctan (1/3) + (4pi) / 3) + raiz (6) (10) sin (1/3 arctan (1/3) + (4pi) / 3) eu #