Responda:
O número é
Explicação:
A diferença entre dois números é encontrada subtraindo.
Procure a palavra 'AND' para identificar quais números estão sendo subtraídos.
A diferença entre 9 e 4 é dada como
Um número dividido por
A diferença entre (um número dividido por 8) E 2 seria escrita como
A resposta é
O número é
Quando
O número do ano passado é dividido por 2 e o resultado é virado de cabeça para baixo e dividido por 3, depois deixado do lado direito para cima e dividido por 2. Então os dígitos no resultado são invertidos para fazer 13. O que é o ano passado?
Color (red) (1962) Aqui estão os passos descritos: {: ("ano", cor (branco) ("xxx"), rarr ["resultado" 0]), (["resultado" 0] div 2 ,, rarr ["resultado" 1]), (["resultado" 1] "virado de cabeça para baixo" ,, rarr ["resultado" 2]), (["resultado" 2] "dividido por" 3, rarr ["resultado "3]), ((" left right-side up ") ,, (" no change ")), ([" resultado "3] div 2,, rarr [" resultado "4]), ([" resultado " 4] "dígitos invertidos" ,, rarr ["result
A soma de dois números consecutivos é 77. A diferença de metade do número menor e um terço do maior número é 6. Se x é o número menor e y é o maior número, que duas equações representam a soma e a diferença de os números?
X + y = 77 1 / 2x-1 / 3y = 6 Se você quer saber os números que você pode continuar lendo: x = 38 y = 39
Quando um polinômio é dividido por (x + 2), o restante é -19. Quando o mesmo polinômio é dividido por (x-1), o restante é 2, como você determina o restante quando o polinômio é dividido por (x + 2) (x-1)?
Sabemos que f (1) = 2 e f (-2) = - 19 do Teorema do Remanescente Agora encontre o resto do polinômio f (x) quando dividido por (x-1) (x + 2) O restante será de a forma Ax + B, porque é o resto após a divisão por uma quadrática. Podemos agora multiplicar os tempos do divisor pelo quociente Q ... f (x) = Q (x-1) (x + 2) + Ax + B A seguir, insira 1 e -2 para x ... f (1) = Q (1-1) (1 + 2) + A (1) + B = A + B = 2 f (-2) = Q (-2-1) (- 2 + 2) + A (-2) + B = -2A + B = -19 Resolvendo essas duas equações, obtemos A = 7 e B = -5 Restante = Ax + B = 7x-5