Responda:
Explicação:
Para resolver isso, vamos usar o que é conhecido como substituição, onde substituímos algo por algo que conhecemos. Neste caso, onde quer que nós vemos
'L varia em conjunto como a raiz quadrada de b, e L = 72 quando a = 8 eb = 9. Encontre L quando a = 1/2 eb = 36? Y varia em conjunto como o cubo de xe a raiz quadrada de w, e Y = 128 quando x = 2 e w = 16. Encontre Y quando x = 1/2 e w = 64?
L = 9 "e" y = 4> "a declaração inicial é" Lpropasqrtb "para converter em uma equação multiplicar por k a constante" "de variação" rArrL = kasqrtb "para encontrar k usar as condições dadas" L = 72 "quando "a = 8" e "b = 9 L = kasqrtbrArrk = L / (asqrtb) = 72 / (8xxsqrt9) = 72/24 = 3" equação é "cor (vermelho) (bar (ul (| cor (branco) ( 2/2) cor (preto) (L = 3asqrtb) cor (branco) (2/2) |))) "quando" a = 1/2 "e" b = 36 "L = 3xx1 / 2xxsqrt36 = 3xx1 / 2xx6 = 9 co
Quando um polinômio é dividido por (x + 2), o restante é -19. Quando o mesmo polinômio é dividido por (x-1), o restante é 2, como você determina o restante quando o polinômio é dividido por (x + 2) (x-1)?
Sabemos que f (1) = 2 e f (-2) = - 19 do Teorema do Remanescente Agora encontre o resto do polinômio f (x) quando dividido por (x-1) (x + 2) O restante será de a forma Ax + B, porque é o resto após a divisão por uma quadrática. Podemos agora multiplicar os tempos do divisor pelo quociente Q ... f (x) = Q (x-1) (x + 2) + Ax + B A seguir, insira 1 e -2 para x ... f (1) = Q (1-1) (1 + 2) + A (1) + B = A + B = 2 f (-2) = Q (-2-1) (- 2 + 2) + A (-2) + B = -2A + B = -19 Resolvendo essas duas equações, obtemos A = 7 e B = -5 Restante = Ax + B = 7x-5
Y é diretamente proporcional a x e y = 216 quando x = 2 Encontre y quando x = 7? Encontre x quando y = 540?
Leia abaixo ... Se algo é proporcional usamos prop, como você afirmou é diretamente proporcional, isso mostra que y = kx, onde k é um valor a ser trabalhado. Pluging em determinados valores: 216 = k xx2, portanto, k = 216/2 = 108 Isso pode ser escrito como: y = 108 xx x Portanto, para responder a primeira pergunta, inserindo os valores: y = 108 xx 7 = 756 Segunda pergunta: 540 = 108 xx x, portanto x = 540/180 = 3