Responda:
A hipotenusa é
Explicação:
Deixe a base do triângulo retângulo direito ser denotada como
Dado dado:
Agora, conforme o teorema de Pitágoras:
A base de um triângulo de uma determinada área varia inversamente à altura. Um triângulo tem uma base de 18cm e uma altura de 10cm. Como você acha a altura de um triângulo de área igual e com 15cm de base?
Altura = 12 cm A área de um triângulo pode ser determinada com a área da equação = 1/2 * base * altura Encontre a área do primeiro triângulo, substituindo as medidas do triângulo pela equação. Areatriangle = 1/2 * 18 * 10 = 90cm ^ 2 Deixe a altura do segundo triângulo = x. Portanto, a equação de área para o segundo triângulo = 1/2 * 15 * x Como as áreas são iguais, 90 = 1/2 * 15 * x vezes ambos os lados por 2. 180 = 15x x = 12
A perna mais longa de um triângulo retângulo é 3 polegadas mais que 3 vezes o comprimento da perna mais curta. A área do triângulo é de 84 polegadas quadradas. Como você encontra o perímetro de um triângulo retângulo?
P = 56 polegadas quadradas. Veja a figura abaixo para melhor compreensão. c = 3b + 3 (bc) / 2 = 84 (b. (3b + 3)) / 2 = 84 3b ^ 2 + 3b = 84xx2 3b ^ 2 + 3b-168 = 0 Resolvendo a equação quadrática: b_1 = 7 b_2 = -8 (impossível) Assim, b = 7 c = 3xx7 + 3 = 24 a ^ 2 = 7 ^ 2 + 24 ^ 2 a ^ 2 = 625 a = sqrt (625) = 25 P = 7 + 24 + 25 = 56 polegadas quadradas
Qual é a taxa de variação da largura (em ft / s) quando a altura é de 10 pés, se a altura estiver diminuindo nesse momento a uma taxa de 1 pé / seg.Um retângulo tem uma altura variável e uma largura variável , mas a altura e a largura mudam para que a área do retângulo seja sempre de 60 pés quadrados?
A taxa de variação da largura com o tempo (dW) / (dt) = 0,6 "ft / s" (dW) / (dt) = (dW) / (dh) xx (dh) / dt (dh) / (dt ) = - 1 "ft / s" Assim (dW) / (dt) = (dW) / (dh) xx-1 = - (dW) / (dh) Wxxh = 60 W = 60 / h (dW) / ( dh) = - (60) / (h ^ 2) Então (dW) / (dt) = - (- (60) / (h ^ 2)) = (60) / (h ^ 2) Então quando h = 10 : rArr (dW) / (dt) = (60) / (10 ^ 2) = 0,6 "ft / s"