Responda:
Altura
Explicação:
A área de um triângulo pode ser determinada com a equação
Encontre a área do primeiro triângulo, substituindo as medidas do triângulo pela equação.
Deixe a altura do segundo triângulo
Então a equação da área para o segundo triângulo
Como as áreas são iguais,
Vezes ambos os lados por 2.
O triângulo A tem uma área de 12 e dois lados de comprimentos 3 e 8. O triângulo B é semelhante ao triângulo A e tem um lado de comprimento 9. Quais são as áreas máxima e mínima possíveis do triângulo B?
Área máxima possível do triângulo B = 108 Área mínima possível do triângulo B = 15.1875 Delta s A e B são semelhantes. Para obter a área máxima do Delta B, o lado 9 do Delta B deve corresponder ao lado 3 do Delta A. Os lados estão na proporção 9: 3. Portanto, as áreas estarão na proporção de 9 ^ 2: 3 ^ 2 = 81: 9 Área máxima do triângulo B = (12 * 81) / 9 = 108 Similarmente para obter a área mínima, o lado 8 do Delta A corresponderá ao lado 9 do Delta B. Os lados estão na relação 9: 8 e
Qual é a taxa de variação da largura (em ft / s) quando a altura é de 10 pés, se a altura estiver diminuindo nesse momento a uma taxa de 1 pé / seg.Um retângulo tem uma altura variável e uma largura variável , mas a altura e a largura mudam para que a área do retângulo seja sempre de 60 pés quadrados?
A taxa de variação da largura com o tempo (dW) / (dt) = 0,6 "ft / s" (dW) / (dt) = (dW) / (dh) xx (dh) / dt (dh) / (dt ) = - 1 "ft / s" Assim (dW) / (dt) = (dW) / (dh) xx-1 = - (dW) / (dh) Wxxh = 60 W = 60 / h (dW) / ( dh) = - (60) / (h ^ 2) Então (dW) / (dt) = - (- (60) / (h ^ 2)) = (60) / (h ^ 2) Então quando h = 10 : rArr (dW) / (dt) = (60) / (10 ^ 2) = 0,6 "ft / s"
Um triângulo tem vértices A, B e C.O vértice A tem um ângulo de pi / 2, o vértice B tem um ângulo de (pi) / 3 e a área do triângulo é 9. Qual é a área do círculo do triângulo?
Círculo inscrito Área = 4,37405 "" unidades quadradas Resolva os lados do triângulo usando a área especificada = 9 e os ângulos A = pi / 2 e B = pi / 3. Use as seguintes fórmulas para Área: Área = 1/2 * a * b * sin C Área = 1/2 * b * c * sin A Área = 1/2 * a * c * sin B para que tenhamos 9 = 1 / 2 * a * b * sin (pi / 6) 9 = 1/2 * b * c * sin (pi / 2) 9 = 1/2 * a * c * sin (pi / 3) solução simultânea usando essas equações resultará em a = 2 * raiz4 108 b = 3 * raiz4 12 c = raiz4 108 resolve metade do perímetro ss = (a + b + c) /2=