Responda:
A inclinação da linha perpendicular à linha reta dada é -2
Explicação:
Duas linhas de contorno são perpendiculares se o produto de suas inclinações for -1
Dada a equação da linha reta
O declive da linha recta dada é a = 1/2, a inclinação da linha perpendicular da linha a ':
A equação da linha QR é y = - 1/2 x + 1. Como você escreve uma equação de uma linha perpendicular à linha QR na forma inclinação-interceptação que contém o ponto (5, 6)?
Veja um processo de solução abaixo: Primeiro, precisamos encontrar a inclinação do para os dois pontos no problema. A linha QR está em forma de interseção de inclinação. A forma inclinação-intercepção de uma equação linear é: y = cor (vermelho) (m) x + cor (azul) (b) Onde cor (vermelho) (m) é a inclinação e cor (azul) (b) é a valor de interceptação de y. y = cor (vermelho) (- 1/2) x + cor (azul) (1) Portanto, a inclinação do QR é: cor (vermelho) (m = -1/2) Em seguida, vamos chamar a inclinaç
O par ordenado (2, 10), é uma solução de uma variação direta, como você escreve a equação de variação direta, então graficamente sua equação e mostra que a inclinação da linha é igual à constante de variação?
Y = 5x "dado" ypropx "then" y = kxlarrcolor (azul) "equação para variação direta" "onde k é a constante de variação" "para encontrar k use o ponto de coordenada dado" (2,10) y = kxrArrk = y / x = 10/2 = 5 "equação é" cor (vermelho) (barra (ul (| cor (branco) (2/2) cor (preto) (y = 5x) cor (branco) (2/2) |))) y = 5x "tem a forma" y = mxlarrcolor (azul) "m é a inclinação" rArry = 5x "é uma linha reta passando pela origem" "com declive m = 5" graph {5x [-10 ,
A inclinação de uma linha é -1/3. Como você encontra a inclinação de uma linha perpendicular a essa linha?
"inclinação perpendicular" = 3> "Dada uma linha com declive m a inclinação de uma linha" "perpendicular a ela é" m_ (cor (vermelho) "perpendicular") = - 1 / m rArrm _ ("perpendicular") = - 1 / (- 1/3) = 3