Qual é a equação da parábola que tem um vértice em (56, -2) e passa pelo ponto (53, -9)?

Qual é a equação da parábola que tem um vértice em (56, -2) e passa pelo ponto (53, -9)?
Anonim

Responda:

#y = -7/9 (x-56) ^ 2 -2 #

Explicação:

A forma geral da equação é

# y = a (x-h) ^ 2 + k #

Dado #color (azul) (h = 56), cor (verde) (k = -2) #

#color (vermelho) (x = 53), cor (roxo) (y = -9) #

Substituir na forma geral da parábola

#color (purle) (- 9) = a ((cor (vermelho) (53) -cor (azul) (56)) ^ 2 cor (verde) (- 2) #

# -9 = a (-3) ^ 2-2 #

# -9 = 9a -2 #

Resolva para #uma#

# -9 + 2 = 9a #

# -7 = 9a #

# -7 / 9 = a #

A equação da parábola com a condição dada será

gráfico {y = -7/9 (x-56) ^ 2 -2 -10, 10, -5, 5}