Responda:
Explicação:
# y = mx + c #
# -5 / 24 = 1/3 * (-7/15) + c #
# c = -5 / 24 + 1/3 * 7/15 #
# c = -19 / 360 #
-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-
Deixe a equação desejada ser
Descobrir
Responda:
Explicação:
A primeira resposta está correta, mas gostaria de fornecer uma solução alternativa usando o formulário de declive de pontos.
Formulário de declive de pontos:
Dado um ponto
Você só tem que substituir tudo.
Solução
A equação de uma linha é 2x + 3y - 7 = 0, encontre: - (1) declive da linha (2) a equação de uma linha perpendicular à linha dada e passando pela interseção da linha x-y + 2 = 0 e 3x + y-10 = 0?
-3x + 2y-2 = 0 cor (branco) ("ddd") -> cor (branco) ("ddd") y = 3 / 2x + 1 Primeira parte em muitos detalhes demonstrando como os primeiros princípios funcionam. Uma vez usado para estes e usando atalhos, você usará muito menos linhas. cor (azul) ("Determinar a intercepção das equações iniciais") x-y + 2 = 0 "" ....... Equação (1) 3x + y-10 = 0 "" .... Equação ( 2) Subtraia x de ambos os lados da Eqn (1) dando -y + 2 = -x Multiplique ambos os lados por (-1) + y-2 = + x "" ........... Equação (1_a
Tomas escreveu a equação y = 3x + 3/4. Quando Sandra escreveu sua equação, eles descobriram que sua equação tinha todas as mesmas soluções que a equação de Tomas. Qual equação poderia ser da Sandra?
4y = 12x +3 12x-4y +3 = 0 Uma equação pode ser dada em muitas formas e ainda significa o mesmo. y = 3x + 3/4 "" (conhecida como a forma inclinação / intercepção). Multiplicada por 4 para remover a fração, obtém-se: 4y = 12x +3 "" rarr 12x-4y = -3 "" (forma padrão) 12x- 4y +3 = 0 "" (forma geral) Estas são todas da forma mais simples, mas também poderíamos ter variações infinitas delas. 4y = 12x + 3 poderia ser escrito como: 8y = 24x +6 "" 12y = 36x +9, "" 20y = 60x +15 etc
Escreva a forma de declive do ponto da equação com a inclinação dada que passa pelo ponto indicado. A.) a linha com inclinação -4 passando por (5,4). e também B.) a linha com inclinação 2 passando por (-1, -2). por favor ajude, isso é confuso?
Y-4 = -4 (x-5) "e" y + 2 = 2 (x + 1)> "a equação de uma linha em" cor (azul) "forma de declive de pontos" é. • cor (branco) (x) y-y_1 = m (x-x_1) "onde m é a inclinação e" (x_1, y_1) "um ponto na linha" (A) "dado" m = -4 "e "(x_1, y_1) = (5,4)" substituindo estes valores pela equação, obtém-se "y-4 = -4 (x-5) larro (azul)" na forma de declive de pontos "(B)" dado "m = 2 "e" (x_1, y_1) = (- 1, -2) y - (- 2)) = 2 (x - (- 1)) rArry + 2 = 2 (x + 1) larro (azul) " em