O produto de dois inteiros pares consecutivos é 24. Encontre os dois inteiros. Responda na forma de pontos emparelhados com o mais baixo dos dois inteiros primeiro. Responda?
Os dois inteiros pares consecutivos: (4,6) ou (-6, -4) Let, color (vermelho) (n e n-2 são os dois inteiros pares consecutivos, onde cor (vermelho) (n inZZ Produto de n e n-2 é 24 ie n (n-2) = 24 => n ^ 2-2n-24 = 0 Agora, [(-6) + 4 = -2 e (-6) xx4 = -24]: .n ^ 2-6n + 4n-24 = 0: .n (n-6) +4 (n-6) = 0:. (N-6) (n + 4) = 0: .n-6 = 0 ou n + 4 = 0 ... a [nzZ] => cor (vermelho) (n = 6 ou n = -4 (i) cor (vermelho) (n = 6) => cor (vermelho) (n-2) = 6-2 = cor (vermelho) (4) Assim, os dois inteiros pares consecutivos: (4,6) (ii)) cor (vermelho) (n = -4) => cor (vermelho) (n-2) = -4-2 = cor (vermelho) (- 6) Assim,
O produto de dois inteiros ímpares consecutivos é 29 menor que 8 vezes sua soma. Encontre os dois inteiros. Resposta na forma de pontos emparelhados com o mais baixo dos dois inteiros primeiro?
(13, 15) ou (1, 3) Sejam x e x + 2 os números ímpares consecutivos, então Conforme a pergunta, temos (x) (x + 2) = 8 (x + x + 2) - 29 : x ^ 2 + 2x = 8 (2x + 2) - 29:. x ^ 2 + 2x = 16x + 16 - 29:. x ^ 2 + 2x - 16x - 16 + 29 = 0:. x ^ 2 - 14x + 13 = 0:. x ^ 2 -x - 13x + 13 = 0:. x (x - 1) - 13 (x - 1) = 0:. (x - 13) (x - 1) = 0:. x = 13 ou 1 Agora, CASO I: x = 13:. x + 2 = 13 + 2 = 15:. Os números são (13, 15). CASO II: x = 1:. x + 2 = 1+ 2 = 3:. Os números são (1, 3). Portanto, como há dois casos sendo formados aqui; o par de números pode ser ambos (13, 15) ou (1, 3).
O produto de dois números é de 1.360. A diferença dos dois números é 6. Quais são os dois números?
40 e 34 OR -34 e -40 Dado que: 1) O produto de dois números é 1,360. 2) A diferença dos dois números é 6. Se os 2 números são x, e y 1) => x xx y = 1360 => x = 1360 / y e 2) => xy = 6 => x = 6+ y --------- (i) Substituindo o valor de x em 1), => (6+ y) y = 1360 => 6y + y ^ 2 -1360 = 0 => y ^ 2 + 6y - 1360 = 0 => y ^ 2 + 40y -34y -1360 = 0 => y (y +40) - 34 (y + 40) = 0 => (y-34) (y + 40) = 0 => y = 34 ou y = -40 Tomando y = 34 e encontrando o valor de x da equação (2): xy = 6 => x - 34 = 6 => x = 40 Então, x = 40 ey = 34 ou Se tome y =