Responda:
Orthocenter:
Explicação:
O ortocentro é o ponto de intersecção de todas as altitudes do triângulo. Quando dadas as três coordenadas de um triângulo, podemos encontrar equações para duas das altitudes e, em seguida, encontrar onde elas se cruzam para obter o ortocentro.
Vamos ligar
Nota: A inclinação da altitude é perpendicular à inclinação das linhas. A altitude tocará uma linha e o ponto que fica fora da linha.
Primeiro, vamos resolver
Inclinação:
Ponto:
Equação:
Então vamos encontrar
Inclinação:
Ponto:
Equação:
Agora, apenas definimos as equações iguais entre si e a solução seria o ortocentro.
Ligue o
Orthocenter:
O triângulo XYZ é isósceles. Os ângulos de base, ângulo X e ângulo Y, são quatro vezes a medida do ângulo do vértice, ângulo Z. Qual é a medida do ângulo X?
Configure duas equações com duas incógnitas. Você encontrará X e Y = 30 graus, Z = 120 graus. Você sabe que X = Y significa que você pode substituir Y por X ou vice-versa. Você pode elaborar duas equações: Como existem 180 graus em um triângulo, isso significa: 1: X + Y + Z = 180 Substitua Y por X: 1: X + X + Z = 180 1: 2X + Z = 180 também pode fazer outra equação baseada nesse ângulo Z é 4 vezes maior que o ângulo X: 2: Z = 4X Agora, vamos colocar a equação 2 na equação 1 substituindo Z por 4x: 2X + 4X = 180 6X = 180 X
Prove a seguinte declaração. Seja ABC qualquer triângulo retângulo, o ângulo reto no ponto C. A altitude traçada de C até a hipotenusa divide o triângulo em dois triângulos retângulos semelhantes uns aos outros e ao triângulo original?
Ver abaixo. De acordo com a Questão, DeltaABC é um triângulo retângulo com / _C = 90 ^ @, e CD é a altitude para a hipotenusa AB. Prova: Vamos supor que / _ABC = x ^ @. Então, angleBAC = 90 ^ @ - x ^ @ = (90 - x) ^ @ Agora, CD perpendicular AB. Então, angleBDC = angleADC = 90 ^ @. Em DeltaCBD, angleBCD = 180 ^ @ - angleBDC - angleCBD = 180 ^ @ - 90 ^ @ - x ^ @ = (90 -x) ^ @ Similarmente, angleACD = x ^ @. Agora, em DeltaBCD e DeltaACD, ângulo CBD = ângulo ACD e ângulo BDC = angleADC. Assim, por AA Criteria of Similarity, DeltaBCD ~ = DeltaACD. Da mesma forma, podemos encont
Um triângulo é isósceles e agudo. Se um ângulo do triângulo mede 36 graus, qual é a medida do maior ângulo (s) do triângulo? Qual é a medida do menor ângulo (s) do triângulo?
A resposta a essa pergunta é fácil, mas requer algum conhecimento geral matemático e senso comum. Triângulo Isósceles: - Um triângulo cujos únicos dois lados são iguais é chamado triângulo isósceles. Um triângulo isósceles também tem dois anjos iguais. Triângulo Agudo: - Um triângulo cujos anjos são maiores que 0 ^ @ e menores que 90 ^ @, ou seja, todos os anjos são agudos é chamado de triângulo agudo. O triângulo dado tem um ângulo de 36 ^ e é tanto isósceles quanto agudo. implica que este triângulo