Responda:
O aumento percentual
Explicação:
A variação percentual (aumento) envolve encontrar a diferença entre o valor inicial e o valor final (custo).
Custo inicial = US $ 2,50
Custo final = US $ 2,80
Mudança no custo =
O aumento percentual
O número total de ingressos para adultos e ingressos para estudantes vendidos foi de 100. O custo para adultos foi de US $ 5 por ingresso e o custo para estudantes foi de US $ 3 por ingresso para um total de US $ 380. Quantos de cada ingressos foram vendidos?
40 ingressos para adultos e 60 ingressos para estudantes foram vendidos. Número de ingressos para adultos vendidos = x Número de ingressos para estudantes vendidos = y O número total de ingressos para adultos e ingressos vendidos foi de 100. => x + y = 100 O custo para adultos foi de $ 5 por ingresso eo custo para estudantes foi de $ 3 por ticket Custo total de x tickets = 5x Custo total de y tickets = 3y Custo total = 5x + 3y = 380 Resolvendo ambas as equações, 3x + 3y = 300 5x + 3y = 380 [Subtraindo ambas] => -2x = -80 = > x = 40 Portanto y = 100-40 = 60
Deixe chapéu (ABC) ser qualquer triângulo, barra de estiramento (AC) para D tal que barra (CD) bar (CB); trecho também barra (CB) em E tal que barra (CE) bar (CA). A barra de segmentos (DE) e a barra (AB) se encontram em F. Mostre que chapéu (DFB é isósceles?
Como se segue Ref: Dado Figura "Em" DeltaCBD, barra (CD) ~ = barra (CB) => / _ CBD = / _ CDB "Novamente em" barra DeltaABC e DeltaDEC (CE) ~ = barra (AC) -> "por construção "bar (CD) ~ = bar (CB) ->" por construção "" E "/ _DCE =" verticalmente oposto "/ _BCA" Por isso "DeltaABC ~ = DeltaDCE => / _ EDC = / _ ABC" Agora em "DeltaBDF, / _FBD = / _ ABC + / _ CBD = / _ EDC + / _ CDB = / _ EDB = / _ FDB Barra "So" (FB) ~ = bar (FD) => DeltaFBD "is isceles"
Comece com DeltaOAU, com barra (OA) = a, barra de extensão (OU) de tal forma que barra (UB) = b, com B na barra (OU). Construa uma linha paralela para barra (UA) interseção bar (OA) em C. Mostrar que, bar (AC) = ab?
Veja a explicação. Desenhe uma linha UD, paralela à CA, conforme mostrado na figura. => UD = AC DeltaOAU e DeltaUDB são semelhantes, => (UD) / (UB) = (OA) / (OU) => (UD) / b = a / 1 => UD = ab => AC = ab " (provado) "