Responda:
Explicação:
Eu gosto de definir o problema igual a y, se já não é. Também ajudará nosso caso a reescrever o problema usando propriedades de logaritmos;
Agora fazemos duas substituições para facilitar a leitura do problema;
Digamos
e
agora;
ahh, podemos trabalhar com isso:)
Vamos pegar a derivada em relação a x de ambos os lados. (Como nenhuma de nossas variáveis são x isso será diferenciação implícita)
Bem, nós sabemos a derivada de
Então vamos voltar para
e
Conectando nossos derivados recém-encontrados, e você e w de volta
Se isso puder ser simplificado ainda mais, não aprendi como. Espero que isso tenha ajudado:)
Mostre que cos² / 10 + cos²4π / 10 + cos² 6π / 10 + cos²9π / 10 = 2. Estou um pouco confuso se eu fizer Cos²4π / 10 = cos² (π-6π / 10) & cos²9π / 10 = cos² (π-π / 10), ele vai se tornar negativo como cos (180 ° -teta) = - costheta em o segundo quadrante. Como faço para provar a questão?
Por favor veja abaixo. LHS = cos ^ 2 (pi / 10) + cos ^ 2 ((4pi) / 10) + cos ^ 2 ((6pi) / 10) + cos ^ 2 ((9pi) / 10) = cos ^ 2 (pi / 10) + cos ^ 2 ((4pi) / 10) + cos ^ 2 (pi- (4pi) / 10) + cos ^ 2 (pi (pi) / 10) = cos ^ 2 (pi / 10) + cos ^ 2 ((4pi) / 10) + cos ^ 2 (pi / 10) + cos ^ 2 ((4pi) / 10) = 2 * [cos ^ 2 (pi / 10) + cos ^ 2 ((4pi) / 10)] = 2 * [cos ^ 2 (pi / 2- (4pi) / 10) + cos ^ 2 ((4pi) / 10)] = 2 * [sen ^ 2 ((4pi) / 10) + cos ^ 2 ((4pi) / 10)] = 2 * 1 = 2 = RHS
O FCF (Fração Continuada Funcional) cosh_ (cf) (x; a) = cosh (x + a / cosh (x + a / cosh (x + ...))). Como você prova que este FCF é uma função par com relação a x e a, juntos? E cosh_ (cf) (x; a) e cosh_ (cf) (-x; a) são diferentes?
Cosh_ (cf) (x; a) = cosh_ (cf) (- x; a) e cosh_ (cf) (x; -a) = cosh_ (cf) (- x; -a). Como os valores de cosh são> = 1, qualquer y aqui> = 1 Vamos mostrar que y = cosh (x + 1 / y) = cosh (-x + 1 / y) Os gráficos são feitos atribuindo a = + -1. As duas estruturas correspondentes do FCF são diferentes. Gráfico para y = cosh (x + 1 / y). Observe que a = 1, x> = - 1 grafo {x-ln (y + (y ^ 2-1) ^ 0,5) + 1 / y = 0} Gráfico para y = cosh (-x + 1 / y). Observe que a = 1, x <= 1 grafo {x + ln (y + (y ^ 2-1) ^ 0,5) -1 / y = 0} Gráfico combinado para y = cosh (x + 1 / y) e y = cosh (-x + 1
Usando Chebyshev Polinomial T_n (x) = cosh (n (arco cosh (x))), x> = 1 e a relação de recorrência T_ (n + 2) (x) = 2xT_ (n + 1) (x) - T_n ( x), com T_0 (x) = 1 e T_1 (x) = x, como você porve aquele cosh (7 arc cosh (1.5)) = 421.5?
T_0 (1.5) ou brevemente, T_0 = 1. T_1 = 1,5 T_2 = 2 (1,5) (1,5) T_1-T_0 = 4,5-1 = 3,5, usando T_n = 2xT_ (n-1) -T_ (n-2), n> = 2. T_3 = 3 (3,5) -1,5 = 9 T_4 = 3 (9) -3,5 = 23,5 T_5 = 3 (23,5) -9 = 61,5 T_6 = 3 (61,5) -23,5 = 161 T_7 = 3 (161) -61,5 = 421,5 Da tabela dos polinômios de Chebyshev do wiki ,. # T_7 (x) = 64x ^ 7-112x ^ 5 + 56x ^ 3-7x