Responda:
Explicação:
A equação da linha tangente em
gráfico {(y-6x ^ 2 + 1) (y-36x + 55) = 0 -41,1, 41,1, -20,55, 20,55}
A equação da linha QR é y = - 1/2 x + 1. Como você escreve uma equação de uma linha perpendicular à linha QR na forma inclinação-interceptação que contém o ponto (5, 6)?
Veja um processo de solução abaixo: Primeiro, precisamos encontrar a inclinação do para os dois pontos no problema. A linha QR está em forma de interseção de inclinação. A forma inclinação-intercepção de uma equação linear é: y = cor (vermelho) (m) x + cor (azul) (b) Onde cor (vermelho) (m) é a inclinação e cor (azul) (b) é a valor de interceptação de y. y = cor (vermelho) (- 1/2) x + cor (azul) (1) Portanto, a inclinação do QR é: cor (vermelho) (m = -1/2) Em seguida, vamos chamar a inclinaç
O par ordenado (2, 10), é uma solução de uma variação direta, como você escreve a equação de variação direta, então graficamente sua equação e mostra que a inclinação da linha é igual à constante de variação?
Y = 5x "dado" ypropx "then" y = kxlarrcolor (azul) "equação para variação direta" "onde k é a constante de variação" "para encontrar k use o ponto de coordenada dado" (2,10) y = kxrArrk = y / x = 10/2 = 5 "equação é" cor (vermelho) (barra (ul (| cor (branco) (2/2) cor (preto) (y = 5x) cor (branco) (2/2) |))) y = 5x "tem a forma" y = mxlarrcolor (azul) "m é a inclinação" rArry = 5x "é uma linha reta passando pela origem" "com declive m = 5" graph {5x [-10 ,
Qual afirmação melhor descreve a equação (x + 5) 2 + 4 (x + 5) + 12 = 0? A equação é quadrática na forma porque pode ser reescrita como uma equação quadrática com a substituição u = (x + 5). A equação é quadrática em forma porque quando é expandida,
Como explicado abaixo, a substituição de u irá descrevê-lo como quadrático em u. Para quadrática em x, sua expansão terá a maior potência de x como 2, melhor descreve-a como quadrática em x.