Responda:
Explicação:
Como os dígitos são dez e as letras são vinte e seis, temos trinta e seis caracteres possíveis no total.
Você pode repetir caracteres, então cada lugar é independente do conteúdo dos outros. Isso significa que você tem
A soma dos dígitos do número de três dígitos é 15. O dígito da unidade é menor que a soma dos outros dígitos. O dígito das dezenas é a média dos outros dígitos. Como você encontra o número?
C = 7 Dado: a + b + c = 15 ............ a ............................... (2) b = (a + c) / 2 ...... ........................ (3) '~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~ Considere a equação (3) -> 2b = (a + c) Escreva a equação (1) como (a + c) + b = 15 Por substituição, isto se torna 2b + b = 15 cor (azul) (=> b = 5) '~~~~~~~~~~~~~~~~~~~~~~~~~ Agora temos: a + 5 + c = 15. .................. (1_a) c <5 + a ........................ ...... (2_a) 5 = (a + c) / 2 .............................. (3_a ) '~~~~~~~~~~~~~~~~~~~~~~~~~~ De 1_a "" a + c = 10 -> cor (verde) (
Quando você inverte os dígitos em um determinado número de dois dígitos, você diminui seu valor em 18. Você pode encontrar o número se a soma de seus dígitos for 10?
Número são: 64,46 viz 6 e 4 Deixe dois dígitos, independentemente do seu valor de local ser 'a' e 'b'. Dada em questão soma de seus dígitos, independentemente da sua posição é 10 ou a + b = 10 Considere isso é a equação um, a + b = 10 ...... (1) Uma vez que é um dois número digital deve ser 10 e outro deve ser 1s. Considere 'a' seja o 10 e seja o 1s. Então 10a + b é o primeiro número. Mais uma vez a ordem é invertida, de modo que 'b' irá se transformar em 10 e 'a' irá se transformar em 1s.
Quantas palavras de quatro letras são possíveis usando as primeiras 5 letras do alfabeto se a primeira letra não pode ser a e as letras adjacentes não podem ser iguais?
As primeiras cinco letras são A, B, C, D, E Considere esta caixa. Cada 1,2,3,4 lugares representa o lugar de uma carta. O primeiro lugar 1 pode ser preenchido de 4 maneiras. (Excluindo A) O primeiro lugar 2 pode ser preenchido de 4 maneiras. O primeiro lugar 1 pode ser preenchido de 3 maneiras. O primeiro lugar 1 pode ser preenchido de duas maneiras. O primeiro lugar 1 pode ser preenchido de 1 maneira. Número total de maneiras = 4 * 4 * 3 * 2 * 1 = 96 maneiras Assim, 96 letras podem ser feitas.