Responda:
Explicação:
Ponto médio
A matéria está em estado líquido quando sua temperatura está entre seu ponto de fusão e seu ponto de ebulição? Suponha que alguma substância tenha um ponto de fusão de 47,42 ° C e um ponto de ebulição de 364,76 ° C.
A substância não estará no estado líquido na faixa de -273.15 C ^ o (zero absoluto) a -47.42C ^ o e a temperatura acima de 364.76C ^ o A substância estará no estado sólido na temperatura abaixo de seu ponto de fusão e será estado gasoso na temperatura acima do seu ponto de ebulição. Portanto, será líquido entre o ponto de fusão e de ebulição.
O ponto A está em (-2, -8) e o ponto B está em (-5, 3). O ponto A é girado (3pi) / 2 no sentido horário sobre a origem. Quais são as novas coordenadas do ponto A e quanto mudou a distância entre os pontos A e B?
Vamos coordenada polar inicial de A, (r, teta) Dada a coordenada cartesiana inicial de A, (x_1 = -2, y_1 = -8) Assim, podemos escrever (x_1 = -2 = rcosthetaandy_1 = -8 = rsintheta) Após 3pi / 2 rotação no sentido horário a nova coordenada de A se torna x_2 = rcos (-3pi / 2 + teta) = rcos (3pi / 2-teta) = - rsintheta = - (- 8) = 8 y_2 = rsin (-3pi / 2 + teta ) = - rsin (3pi / 2-theta) = rcostheta = -2 Distância inicial de A de B (-5,3) d_1 = sqrt (3 ^ 2 + 11 ^ 2) = sqrt130 distância final entre a nova posição de A ( 8, -2) e B (-5,3) d_2 = sqrt (13 ^ 2 + 5 ^ 2) = sqrt194 Então Di
Pontos (–9, 2) e (–5, 6) são pontos finais do diâmetro de um círculo Qual é o comprimento do diâmetro? Qual é o ponto central C do círculo? Dado o ponto C encontrado na parte (b), indique o ponto simétrico para C em torno do eixo x
D = sqrt (32) = 4sqrt (2) ~~ 5.66 center, C = (-7, 4) ponto simétrico sobre o eixo x: (-7, -4) Dado: pontos finais do diâmetro de um círculo: (- 9, 2), (-5, 6) Use a fórmula de distância para encontrar o comprimento do diâmetro: d = sqrt ((y_2 - y_1) ^ 2 + (x_2 - x_1) ^ 2) d = sqrt ((- 9 - -5) ^ 2 + (2 - 6) ^ 2) = sqrt (16 + 16) = sqrt (32) = sqrt (16) sqrt (2) = 4 sqrt (2) ~~ 5.66 Use a fórmula do ponto médio para encontre o centro: ((x_1 + x_2) / 2, (y_1 + y_1) / 2): C = ((-9 + -5) / 2, (2 + 6) / 2) = (-14/2, 8/2) = (-7, 4) Use a regra de coordenadas para reflexão sobre o eixo