Responda:
Explicação:
Deixei
P tem coeficientes reais, então
Nós queremos o grau de
Então por agora,
A largura de um parquinho retangular é de 2x a 5 pés e o comprimento é de 3x + 9 pés. Como você escreve um polinômio P (x) que representa o perímetro e então avalia este perímetro e então avalia este polinômio de perímetro se x é 4 pés?
O perímetro é o dobro da soma da largura e comprimento. P (x) = 2 ((2x-5) + (3x + 9)) = 2 (5x + 4) = 10x + 8P (4) = 10 (4) + 8 = 48 Verificar. x = 4 significa uma largura de 2 (4) -5 = 3 e um comprimento de 3 (4) + 9 = 21, portanto, um perímetro de 2 (3 + 21) = 48. quad sqrt
Quando um polinômio é dividido por (x + 2), o restante é -19. Quando o mesmo polinômio é dividido por (x-1), o restante é 2, como você determina o restante quando o polinômio é dividido por (x + 2) (x-1)?
Sabemos que f (1) = 2 e f (-2) = - 19 do Teorema do Remanescente Agora encontre o resto do polinômio f (x) quando dividido por (x-1) (x + 2) O restante será de a forma Ax + B, porque é o resto após a divisão por uma quadrática. Podemos agora multiplicar os tempos do divisor pelo quociente Q ... f (x) = Q (x-1) (x + 2) + Ax + B A seguir, insira 1 e -2 para x ... f (1) = Q (1-1) (1 + 2) + A (1) + B = A + B = 2 f (-2) = Q (-2-1) (- 2 + 2) + A (-2) + B = -2A + B = -19 Resolvendo essas duas equações, obtemos A = 7 e B = -5 Restante = Ax + B = 7x-5
Como você escreve uma função polinomial de menor grau que possui coeficientes reais, os seguintes zeros -5,2, -2 e um coeficiente líder de 1?
O polinômio requerido é P (x) = x ^ 3 + 5x ^ 2-4x-20. Sabemos que: se a é um zero de um polinômio real em x (digamos), então x-a é o fator do polinômio. Seja P (x) o polinômio requerido. Aqui -5,2, -2 são os zeros do polinômio necessário. implica {x - (- 5)}, (x-2) e {x - (- 2)} são os fatores do polinômio requerido. implica P (x) = (x + 5) (x-2) (x + 2) = (x + 5) (x ^ 2-4) implica P (x) = x ^ 3 + 5x ^ 2-4x- 20 Assim, o polinômio requerido é P (x) = x ^ 3 + 5x ^ 2-4x-20