Responda:
Explicação:
Em tais situações, o primeiro passo é desenhar uma figura.
Em relação à notação apresentada pela foto, sabemos que
Saber que o triângulo é equilateral facilita tudo: as alturas também são medianas. Então a altura
Então, o triângulo é dividido em dois triângulos retângulos congruentes e o Teorema de Pitágoras é válido para um desses dois triângulos retângulos:
Agora a área:
O comprimento de cada lado de um triângulo equilátero é aumentado em 5 polegadas, portanto, o perímetro é agora de 60 polegadas. Como você escreve e resolve uma equação para encontrar o comprimento original de cada lado do triângulo equilátero?
Eu encontrei: 15 "em" Vamos chamar o comprimento original x: Aumentar de 5 "em" nos dará: (x + 5) + (x + 5) + (x + 5) = 60 3 (x + 5) = 60 rearranjando: x + 5 = 60/3 x + 5 = 20 x = 20-5 x = 15 "in"
A perna mais longa de um triângulo retângulo é 3 polegadas mais que 3 vezes o comprimento da perna mais curta. A área do triângulo é de 84 polegadas quadradas. Como você encontra o perímetro de um triângulo retângulo?
P = 56 polegadas quadradas. Veja a figura abaixo para melhor compreensão. c = 3b + 3 (bc) / 2 = 84 (b. (3b + 3)) / 2 = 84 3b ^ 2 + 3b = 84xx2 3b ^ 2 + 3b-168 = 0 Resolvendo a equação quadrática: b_1 = 7 b_2 = -8 (impossível) Assim, b = 7 c = 3xx7 + 3 = 24 a ^ 2 = 7 ^ 2 + 24 ^ 2 a ^ 2 = 625 a = sqrt (625) = 25 P = 7 + 24 + 25 = 56 polegadas quadradas
Um triângulo é isósceles e agudo. Se um ângulo do triângulo mede 36 graus, qual é a medida do maior ângulo (s) do triângulo? Qual é a medida do menor ângulo (s) do triângulo?
A resposta a essa pergunta é fácil, mas requer algum conhecimento geral matemático e senso comum. Triângulo Isósceles: - Um triângulo cujos únicos dois lados são iguais é chamado triângulo isósceles. Um triângulo isósceles também tem dois anjos iguais. Triângulo Agudo: - Um triângulo cujos anjos são maiores que 0 ^ @ e menores que 90 ^ @, ou seja, todos os anjos são agudos é chamado de triângulo agudo. O triângulo dado tem um ângulo de 36 ^ e é tanto isósceles quanto agudo. implica que este triângulo