Responda:
Explicação:
Linear significa fazer com uma linha reta.
A equação de uma linha reta deve ter pelo menos dois dos seguintes termos:
um termo x, um termo y e um termo constante (ou numérico).
X e y podem não estar no denominador.
Em
O primeiro e o segundo termos de uma sequência geométrica são respectivamente o primeiro e o terceiro termos de uma sequência linear. O quarto termo da sequência linear é 10 e a soma dos seus cinco primeiros termos é 60 Encontre os primeiros cinco termos da sequência linear?
{16, 14, 12, 10, 8} Uma sequência geométrica típica pode ser representada como c_0a, c_0a ^ 2, cdots, c_0a ^ k e uma sequência aritmética típica como c_0a, c_0a + Delta, c_0a + 2Delta, cdots, c_0a + kDelta Chamando c_0 a como o primeiro elemento para a sequência geométrica que temos {(c_0 a ^ 2 = c_0a + 2Delta -> "Primeiro e segundo de GS são o primeiro e o terceiro de um LS"), (c_0a + 3Delta = 10- > "O quarto termo da seqüência linear é 10"), (5c_0a + 10Delta = 60 -> "A soma do seu primeiro cinco termo é 60"):} Resolven
O que define um sistema linear inconsistente? Você consegue resolver um sistema linear inconsistente?
Um sistema inconsistente de equações é, por definição, um sistema de equações para as quais não há um conjunto de valores desconhecidos que o transformem em um conjunto de identidades. É insolúvel pela definição. Exemplo de uma equação linear única inconsistente com uma variável desconhecida: 2x + 1 = 2 (x + 2) Obviamente, é totalmente equivalente a 2x + 1 = 2x + 4 ou 1 = 4, que não é uma identidade, não existe tal x que transforma a equação inicial em uma identidade. Exemplo de um sistema inconsistente de dua
Seja f uma função linear tal que f (-1) = - 2 e f (1) = 4. Encontre uma equação para a função linear f e então represente y = f (x) na grade de coordenadas?
Y = 3x + 1 Como f é uma função linear, isto é, uma linha, tal que f (-1) = - 2 ef (1) = 4, isso significa que ela passa por (-1, -2) e (1,4 ) Note que apenas uma linha pode passar através de dois pontos e se os pontos são (x_1, y_1) e (x_2, y_2), a equação é (x-x_1) / (x_2-x_1) = (y-y_1) / (y_2-y_1) e, portanto, a equação da linha que passa por (-1, -2) e (1,4) é (x - (- 1)) / (1 - (- 1)) = (y - (- 2 )) / (4 - (- 2)) ou (x + 1) / 2 = (y + 2) / 6 ed multiplicando por 6 ou 3 (x + 1) = y + 2 ou y = 3x + 1