A linha A e a linha B são paralelas. A inclinação da linha A é -2. Qual é o valor de x se a inclinação da Linha B for 3x + 3?
X = -5 / 3 Seja m_A e m_B os gradientes das linhas A e B, respectivamente, se A e B forem paralelos, então m_A = m_B Então, sabemos que -2 = 3x + 3 Precisamos reorganizar para encontrar x - 2-3 = 3x + 3-3 -5 = 3x + 0 (3x) / 3 = x = -5 / 3 Prova: 3 (-5/3) + 3 = -5 + 3 = -2 = m_A
Uma linha passa pelos pontos (2,1) e (5,7). Outra linha passa pelos pontos (-3,8) e (8,3). As linhas são paralelas, perpendiculares ou não?
Nem paralelo nem perpendicular Se o gradiente de cada linha é o mesmo, então eles são paralelos. Se o gradiente de é o inverso negativo do outro, então eles são perpendiculares entre si. Isto é: um é m "e o outro é" -1 / m Deixe a linha 1 ser L_1 Deixe a linha 2 ser L_2 Deixe o gradiente da linha 1 ser m_1 Deixe o gradiente da linha 2 ser m_2 "gradiente" = ("Alterar y -axis ") / (" Alteração no eixo x ") => m_1 = (7-1) / (5-2) = 6/3 = +2 .............. ....... (1) => m_2 = (3-8) / (8 - (- 3)) = (-5) / (11) ............. ...
Escreva a forma de declive do ponto da equação com a inclinação dada que passa pelo ponto indicado. A.) a linha com inclinação -4 passando por (5,4). e também B.) a linha com inclinação 2 passando por (-1, -2). por favor ajude, isso é confuso?
Y-4 = -4 (x-5) "e" y + 2 = 2 (x + 1)> "a equação de uma linha em" cor (azul) "forma de declive de pontos" é. • cor (branco) (x) y-y_1 = m (x-x_1) "onde m é a inclinação e" (x_1, y_1) "um ponto na linha" (A) "dado" m = -4 "e "(x_1, y_1) = (5,4)" substituindo estes valores pela equação, obtém-se "y-4 = -4 (x-5) larro (azul)" na forma de declive de pontos "(B)" dado "m = 2 "e" (x_1, y_1) = (- 1, -2) y - (- 2)) = 2 (x - (- 1)) rArry + 2 = 2 (x + 1) larro (azul) " em