Responda:
usar regra sine
Explicação:
Eu sugiro que você encontre um pedaço de papel e um lápis para compreender essa explicação mais fácil.
encontre o valor do ângulo restante:
Vamos dar-lhes nomes
o menor ângulo terá o lado mais curto do triângulo,
o que significa que B (o menor ângulo) está voltado para o lado mais curto,
e os outros dois lados são mais longos
o que significa AC é o lado mais curto,
então os outros dois lados podem ter o maior comprimento.
digamos AC é 5 (o comprimento que você deu)
usando regra sine, podemos saber
a relação entre o seno de um ângulo e o lado em que o ângulo está voltado é a mesma:
conhecido:
com isso, você pode encontrar o comprimento dos outros dois lados quando o menor é 5
Vou deixar o resto para você, continue indo ~
Dois cantos de um triângulo têm ângulos de (2 pi) / 3 e (pi) / 4. Se um lado do triângulo tem um comprimento de 12, qual é o maior perímetro possível do triângulo?
O perímetro mais longo possível é 12 + 40,155 + 32,786 = 84,941. Como dois ângulos são (2pi) / 3 e pi / 4, o terceiro ângulo é pi-pi / 8-pi / 6 = (12pi-8pi-3pi) / 24- = pi / 12. Para o perímetro mais longo do comprimento 12, digamos a, tem que ser oposto ao menor ângulo pi / 12 e então usando a fórmula seno outros dois lados serão 12 / (sin (pi / 12)) = b / (sin ((2pi) / 3)) = c / (sin (pi / 4)) Assim, b = (12s ((2pi) / 3)) / (sin (pi / 12)) = (12xx0.866) /0,2588 = 40,155 e c = ( 12xxsin (pi / 4)) / (sin (pi / 12)) = (12xx0.7071) /0.2588 = 32.786 Assim, o perí
Dois cantos de um triângulo têm ângulos de (2 pi) / 3 e (pi) / 4. Se um lado do triângulo tem um comprimento de 4, qual é o maior perímetro possível do triângulo?
P_max = 28,31 unidades O problema fornece dois dos três ângulos em um triângulo arbitrário. Como a soma dos ângulos em um triângulo deve somar 180 graus, ou pi radianos, podemos encontrar o terceiro ângulo: (2pi) / 3 + pi / 4 + x = pi x = pi- (2pi) / 3- pi / 4 x = (12pi) / 12- (8pi) / 12- (3pi) / 12 x = pi / 12 Vamos desenhar o triângulo: O problema afirma que um dos lados do triângulo tem um comprimento de 4, mas não especifica qual lado. No entanto, em qualquer triângulo dado, é verdade que o menor lado será oposto ao menor ângulo. Se quisermos maximiz
Dois cantos de um triângulo têm ângulos de (2 pi) / 3 e (pi) / 4. Se um lado do triângulo tem um comprimento de 19, qual é o maior perímetro possível do triângulo?
Cor do perímetro mais longa possível (verde) (P = 19 + 51.909 + 63.5752 = 134.4842) Três ângulos são (2pi) / 3, pi / 4, pi / 12 quando os três ângulos se somam ao pi Para obter o perímetro mais longo, o lado 19 deve corresponder ao menor ângulo pi / 12 19 / sin (pi / 12) = b / sen (pi / 4) = c / sen ((2pi) / 3) b = (19 * sin (pi / 4) ) / sin (pi / 12) = 51.909 c = (19 * sen ((2pi) / 3)) / sin (pi / 12) = 63.5752 Cor perimetral mais longa possível (verde) (P = 19 + 51.909 + 63.5752 = 134.4842 )