
Responda:
Explicação:
Deixei
e
E se
Portanto, o Área A do Retângulo
Portanto,
Para
Além disso,
Adequadamente,
Portanto, a maior área possível do retângulo é
Desfrute de matemática!
A área de um retângulo é de 100 polegadas quadradas. O perímetro do retângulo é de 40 polegadas. Um segundo retângulo tem a mesma área, mas um perímetro diferente. O segundo retângulo é um quadrado?

Não. O segundo retângulo não é um quadrado. A razão pela qual o segundo retângulo não é um quadrado é porque o primeiro retângulo é o quadrado. Por exemplo, se o primeiro retângulo (a.k.a. o quadrado) tiver um perímetro de 100 polegadas quadradas e um perímetro de 40 polegadas, então um lado deve ter um valor de 10. Com isto dito, vamos justificar a afirmação acima. Se o primeiro retângulo é de fato um quadrado * então todos os seus lados devem ser iguais. Além disso, isso realmente faz sentido porque, se um de seus lad
Prove a seguinte declaração. Seja ABC qualquer triângulo retângulo, o ângulo reto no ponto C. A altitude traçada de C até a hipotenusa divide o triângulo em dois triângulos retângulos semelhantes uns aos outros e ao triângulo original?
Ver abaixo. De acordo com a Questão, DeltaABC é um triângulo retângulo com / _C = 90 ^ @, e CD é a altitude para a hipotenusa AB. Prova: Vamos supor que / _ABC = x ^ @. Então, angleBAC = 90 ^ @ - x ^ @ = (90 - x) ^ @ Agora, CD perpendicular AB. Então, angleBDC = angleADC = 90 ^ @. Em DeltaCBD, angleBCD = 180 ^ @ - angleBDC - angleCBD = 180 ^ @ - 90 ^ @ - x ^ @ = (90 -x) ^ @ Similarmente, angleACD = x ^ @. Agora, em DeltaBCD e DeltaACD, ângulo CBD = ângulo ACD e ângulo BDC = angleADC. Assim, por AA Criteria of Similarity, DeltaBCD ~ = DeltaACD. Da mesma forma, podemos encont
Um triângulo é isósceles e agudo. Se um ângulo do triângulo mede 36 graus, qual é a medida do maior ângulo (s) do triângulo? Qual é a medida do menor ângulo (s) do triângulo?

A resposta a essa pergunta é fácil, mas requer algum conhecimento geral matemático e senso comum. Triângulo Isósceles: - Um triângulo cujos únicos dois lados são iguais é chamado triângulo isósceles. Um triângulo isósceles também tem dois anjos iguais. Triângulo Agudo: - Um triângulo cujos anjos são maiores que 0 ^ @ e menores que 90 ^ @, ou seja, todos os anjos são agudos é chamado de triângulo agudo. O triângulo dado tem um ângulo de 36 ^ e é tanto isósceles quanto agudo. implica que este triângulo