Responda:
O menor número é 8, embora qualquer número maior que 8 também seja um número válido.
Explicação:
o
Quebre a frase em frases curtas primeiro.
Deixe o número ser
"SUM" é sempre usado com "AND" para informar quais números são adicionados juntos.
A soma é então
"Produto" é a resposta para uma multiplicação e refere-se a
A resposta para a multiplicação
Colocar tudo isso junto nos dá:
O menor valor que tornará isso verdadeiro é 8, embora todos os números maiores que 8 também sejam soluções.
A soma de dois números consecutivos é 77. A diferença de metade do número menor e um terço do maior número é 6. Se x é o número menor e y é o maior número, que duas equações representam a soma e a diferença de os números?
X + y = 77 1 / 2x-1 / 3y = 6 Se você quer saber os números que você pode continuar lendo: x = 38 y = 39
Duas vezes um número menos um segundo número é -1. Duas vezes o segundo número adicionado a três vezes o primeiro número é 9. Como você encontra os dois números?
O primeiro número é 1 e o segundo número é 3. Consideramos o primeiro número como xeo segundo como y. A partir dos dados, podemos escrever duas equações: 2x-y = -1 3x + 2y = 9 Da primeira equação, derivamos um valor para y. 2x-y = -1 Adicione y aos dois lados. 2x = -1 + y Adiciona 1 a ambos os lados. 2x + 1 = y ou y = 2x + 1 Na segunda equação, substitua y por cor (vermelho) ((2x + 1)). 3x + 2 cores (vermelho) ((2x + 1)) = 9 Abra os suportes e simplifique. 3x + 4x + 2 = 9 7x + 2 = 9 Subtraia 2 de ambos os lados. 7x = 7 Divida os dois lados por 7. x = 1 Na primeira equa
Duas vezes um número mais três vezes outro número é igual a 4. Três vezes o primeiro número mais quatro vezes o outro número é 7. Quais são os números?
O primeiro número é 5 e o segundo é -2. Seja x o primeiro número e y o segundo. Então nós temos {(2x + 3y = 4), (3x + 4y = 7):} Podemos usar qualquer método para resolver este sistema. Por exemplo, por eliminação: Primeiro, eliminando x subtraindo um múltiplo da segunda equação do primeiro, 2x + 3y- 2/3 (3x + 4y) = 4 - 2/3 (7) => 1 / 3y = - 2/3 => y = -2 substituindo esse resultado pela primeira equação, 2x + 3 (-2) = 4 => 2x - 6 = 4 => 2x = 10 => x = 5 Assim, o primeiro número é 5 e o segundo é -2. Verificar, conectando-os,