Responda:
Existem dois pares:
Explicação:
Para encontrar os números, temos que resolver a equação:
Agora as soluções são:
O produto de dois inteiros pares consecutivos é 168. Como você encontra os inteiros?
12 e 14 -12 e -14 permitem que o primeiro inteiro par seja x Então o segundo inteiro par consecutivo será x + 2 Como o produto dado é 168, a equação será a seguinte: x * (x + 2) = 168 x ^ 2 + 2 * x = 168 x ^ 2 + 2 * x-168 = 0 Sua equação é da forma ax ^ 2 + b * x + c = 0 Encontre a discriminação Delta delta = b ^ 2-4 * a * c Delta = 2 ^ 2-4 * 1 * (- 168) Delta = 676 Como Delta> 0 existem duas raízes reais. x = (- b + sqrt (delta)) / (2 * a) x '= (- b-sqrt (delta)) / (2 * a) x = (- 2 + sqrt (676)) / (2 * 1) x = 12 x '= (- 2-sqrt (676)) / (2 * 1) x' =
O produto de dois inteiros pares consecutivos é 24. Encontre os dois inteiros. Responda na forma de pontos emparelhados com o mais baixo dos dois inteiros primeiro. Responda?
Os dois inteiros pares consecutivos: (4,6) ou (-6, -4) Let, color (vermelho) (n e n-2 são os dois inteiros pares consecutivos, onde cor (vermelho) (n inZZ Produto de n e n-2 é 24 ie n (n-2) = 24 => n ^ 2-2n-24 = 0 Agora, [(-6) + 4 = -2 e (-6) xx4 = -24]: .n ^ 2-6n + 4n-24 = 0: .n (n-6) +4 (n-6) = 0:. (N-6) (n + 4) = 0: .n-6 = 0 ou n + 4 = 0 ... a [nzZ] => cor (vermelho) (n = 6 ou n = -4 (i) cor (vermelho) (n = 6) => cor (vermelho) (n-2) = 6-2 = cor (vermelho) (4) Assim, os dois inteiros pares consecutivos: (4,6) (ii)) cor (vermelho) (n = -4) => cor (vermelho) (n-2) = -4-2 = cor (vermelho) (- 6) Assim,
O produto de dois inteiros ímpares consecutivos é 29 menor que 8 vezes sua soma. Encontre os dois inteiros. Resposta na forma de pontos emparelhados com o mais baixo dos dois inteiros primeiro?
(13, 15) ou (1, 3) Sejam x e x + 2 os números ímpares consecutivos, então Conforme a pergunta, temos (x) (x + 2) = 8 (x + x + 2) - 29 : x ^ 2 + 2x = 8 (2x + 2) - 29:. x ^ 2 + 2x = 16x + 16 - 29:. x ^ 2 + 2x - 16x - 16 + 29 = 0:. x ^ 2 - 14x + 13 = 0:. x ^ 2 -x - 13x + 13 = 0:. x (x - 1) - 13 (x - 1) = 0:. (x - 13) (x - 1) = 0:. x = 13 ou 1 Agora, CASO I: x = 13:. x + 2 = 13 + 2 = 15:. Os números são (13, 15). CASO II: x = 1:. x + 2 = 1+ 2 = 3:. Os números são (1, 3). Portanto, como há dois casos sendo formados aqui; o par de números pode ser ambos (13, 15) ou (1, 3).