Prove isto: (1-sin ^ 4x-cos ^ 4x) / (1-sin ^ 6x-cos ^ 6x) = 2/3?

Prove isto: (1-sin ^ 4x-cos ^ 4x) / (1-sin ^ 6x-cos ^ 6x) = 2/3?
Anonim

# LHS = (1-sin ^ 4x-cos ^ 4x) / (1-sin ^ 6x-cos ^ 6x) #

# = (1 - ((sin ^ 2x) ^ 2 + (cos ^ 2x) ^ 2)) / (1 - ((sen ^ 2x) ^ 3 + (cos ^ 2x) ^ 3)) #

# = (1 - ((sen ^ 2x + cos ^ 2x) ^ 2-2sin ^ 2cos ^ 2x)) / (1 - ((sen ^ 2x + cos ^ 2x) ^ 3-3sin ^ 2xcos ^ 2x (sen ^ 2x + cos ^ 2x)) #

# = (1- (sin ^ 2x + cos ^ 2x) ^ 2 + 2sin ^ 2cos ^ 2x) / (1- (sin ^ 2x + cos ^ 2x) ^ 3 + 3sin ^ 2xcos ^ 2x (sen ^ 2x + cos ^ 2x)) #

# = (1-1 ^ 2 + 2sin ^ 2cos ^ 2x) / (1-1 ^ 3 + 3sin ^ 2xcos ^ 2x) #

# = (2sin ^ 2cos ^ 2x) / (3sin ^ 2xcos ^ 2x) = 2/3 = RHS #

Provado

Na etapa 3 as seguintes fórmulas são usadas

# a ^ 2 + b ^ 2 = (a + b) ^ 2-2ab #

e

# a ^ 3 + b ^ 3 = (a + b) ^ 3-3ab (a + b) #

Responda:

Por favor veja a explicação. Eu confirmei cada passo desta prova usando www.WolframAlpha.com

Explicação:

Multiplique ambos os lados por # 3 (1-sin ^ 6 (x) -cos ^ 6 (x)) #

# 3-3sin ^ 4 (x) -3cos ^ 4 (x) = 2-2sin ^ 6 (x) -2cos ^ 6 (x) #

Substituto # -3 (1 - cos ^ 2 (x)) ^ 2 "para" -3sin ^ 4 (x) #

# 3-3 (1 - cos ^ 2 (x)) ^ 2-3cos ^ 4 (x) = 2-2sin ^ 6 (x) -2cos ^ 6 (x) #

Multiplique o quadrado:

# 3-3 (1 - 2cos ^ 2 (x) + cos ^ 4 (x)) - 3cos ^ 4 (x) = 2-2sin ^ 6 (x) -2cos ^ 6 (x) #

Distribua o -3:

# 3-3 + 6cos ^ 2 (x) -3cos ^ 4 (x) -3cos ^ 4 (x) = 2-2sin ^ 6 (x) -2cos ^ 6 (x) #

Combine termos semelhantes:

# 6cos ^ 2 (x) -6cos ^ 4 (x) = 2-2sin ^ 6 (x) -2cos ^ 6 (x) #

Divida os dois lados por 2:

# 3cos ^ 2 (x) -3cos ^ 4 (x) = 1-sin ^ 6 (x) -cos ^ 6 (x) #

Substituto # - (1 - cos ^ 2 (x)) ^ 3 "para" -sin ^ 6 (x) #

# 3cos ^ 2 (x) -3cos ^ 4 (x) = 1- (1 - cos ^ 2 (x)) ^ 3-cos ^ 6 (x) #

Expanda o cubo:

# 3cos ^ 2 (x) -3cos ^ 4 (x) = 1- (1 - 3cos ^ 2 (x) + 3cos ^ 4 (x) -cos ^ 6 (x)) - cos ^ 6 (x) #

Distribuir o -1:

# 3cos ^ 2 (x) -3cos ^ 4 (x) = 1-1 + 3cos ^ 2 (x) -3cos ^ 4 (x) + cos ^ 6 (x) -cos ^ 6 (x) #

Combine termos semelhantes:

# 3cos ^ 2 (x) -3cos ^ 4 (x) = 3cos ^ 2 (x) -3cos ^ 4 (x) #

A direita é idêntica à esquerda. Q.E.D.