Vamos precisar dessas duas identidades para completar a prova:
Vou começar com o lado direito e manipulá-lo até parecer o lado esquerdo:
Essa é a prova. Espero que isso tenha ajudado!
Procuramos provar a identidade:
# (tanx + sinx) / (2tanx) - = cos ^ 2 (x / 2) #
Considere o LHS da expressão e use a definição de tangente:
# LHS = (tanx + sinx) / (2tanx) #
# = (sinx / cosx + sinx) / (2 (sinx / cosx)) #
# = (cosx / sinx) ((sinx / cosx + sinx) / 2) #
# = (cosx / sinx * sinx / cosx + cosx / sinx * sinx) / 2 #
# = (1 + cosx) / 2 #
Agora, considere o RHS e use a identidade:
# cos2A - = 2cos ^ 2A - 1 #
Dando-nos:
# cosx - = 2cos ^ 2 (x / 2) - 1 => 1 + cosx - = 2cos ^ 2 (x / 2) #
#:. cos ^ 2 (x / 2) = (1 + cosx) / 2 = RHS #
Portanto:
# LHS = RHS => (tanx + sinx) / (2tanx) - = cos ^ 2 (x / 2) # QED
Suponha que você esteja iniciando um serviço de limpeza de escritório. Você gastou $ 315 em equipamentos. Para limpar um escritório, você usa US $ 4 em suprimentos. Você cobra US $ 25 por escritório. Quantos escritórios você deve limpar para empatar?
Número de escritórios a serem limpos para cobrir o custo do equipamento = 15 Custo do equipamento = $ 315 Custo dos suprimentos = $ 4 Custo por escritório = $ 25 Número de escritórios a serem limpos para cobrir o custo do equipamento = x Então - 25x-4x = 315 21x = 315 x = 315/21 = 15 Número de escritórios a serem limpos para cobrir o custo do equipamento = 15
Como você prova (cotx + cscx / sinx + tanx) = (cotx) (cscx)?
Verificado abaixo (cotx + cscx) / (senx + tanx) = (cotx) (cscx) (cosx / senx + 1 / senx) / (senx + sinx / cosx) = (cotx) (cscx) ((cosx + 1) / ((sinxcosx) / cosx + sinx / cosx) = (cotx) (cscx) ((coss + 1) / senx) / ((senx (coss + 1)) / cosx) = (cotx) (cscx ) (cancelar (cosx + 1) / sinx) * (cosx / (sinxcancel ((cosx + 1)))) = (cotx) (cscx) (cosx / senx * 1 / sinx) = (cotx) (cscx) ( cotx) (cscx) = (cotx) (cscx)
Você está dirigindo para um local de férias que é de 1500 quilômetros de distância. Incluindo paradas para descanso, você leva 42 horas para chegar lá. Você estima que você dirigiu a uma velocidade média de 50 quilômetros por hora. Quantas horas você não estava dirigindo?
12 horas Se você pode dirigir 50 milhas em 1 hora, o número de horas necessárias para dirigir 1.500 milhas seria de 1500/50 ou 30 horas. 50x = 1500 rarr x representa o número de horas que demorou a conduzir 1500 milhas 42 é o número total de horas e o número total de horas gastas a conduzir é de 30 42-30 = 12