Por favor, resolva q 20?

Por favor, resolva q 20?
Anonim

Responda:

Eu peguei dentro do letreiro #tan theta = {1-x ^ 2} / 2x #então, ao invés de confundir, vamos chamar de escolha (D).

Explicação:

#x = sec theta + tan theta #

#x = {1 + sin theta} / cos theta #

Todas as respostas são da forma # {x ^ 2 pm 1} / {kx} # então vamos ao quadrado # x #:

# x ^ 2 = {1 + 2 sin theta + sin ^ 2 theta} / {cos ^ 2 theta} #

# x ^ 2 = {1 + 2 sin theta + sin ^ 2 theta} / {1 - sin ^ 2 theta} #

Deixei #s = sin theta #

# x ^ 2 - x ^ 2 s ^ 2 = 1 + 2s + s ^ 2 #

# (1 + x ^ 2) s ^ 2 + 2s + (1-x ^ 2) = 0 #

Que fatores!

# (s + 1) ((1+ x ^ 2) s + (1- x ^ 2)) = 0 #

# s = -1 ou s = {1-x ^ 2} / {1 + x ^ 2} #

#sin theta = -1 # significa # theta = -90 ^ circ # então o cosseno é zero e #sec theta + tan theta # é indefinido. Então podemos ignorar isso e concluir

#sin theta = {1-x ^ 2} / {1 + x ^ 2} #

Esse é um triângulo retângulo cujo lado restante é

# sqrt {(1 + x ^ 2) ^ 2 - (1-x ^ 2) ^ 2} = sqrt {2 (2x ^ 2)} = | 2x | #

assim

#tan theta = pm {1-x ^ 2} / {2x} #

Poderíamos nos preocupar com o valor absoluto, mas vamos apenas chamar essa escolha # D. #

Responda:

Opção (D).

Explicação:

Dado que, # sectheta + tantheta = x …… (1) #.

Nós sabemos isso, # sec ^ 2theta-tan ^ 2theta = 1 #.

#:. (sectheta + tantheta) (sectheta-tantheta) = 1 #.

#:. x (sectheta-tantheta) = 1 #.

#:. sectheta-tantheta = 1 / x …… (2) #.

#:. (1) - (2) rArr 2tantheta = x-1 / x = (x ^ 2-1) / x #.

# rArr tantheta = (x ^ 2-1) / (2x) #.

Conseqüentemente, opção (D).