Responda:
Veja um processo de solução abaixo:
Explicação:
A linha L está na forma Linear Padrão. A forma padrão de uma equação linear é:
Onde, se possível,
A inclinação de uma equação na forma padrão é:
Substituindo os valores da equação na fórmula de inclinação dá:
Como a linha M é paralela à linha L, a linha M terá a mesma inclinação.
Agora podemos usar a fórmula de declive do ponto para escrever uma equação para a Linha M. Os estados da fórmula do declive do ponto:
Onde
Substituindo a inclinação que calculamos e os valores do ponto no problema dão:
Se necessário para a resposta, podemos transformar essa equação na forma Linear Padrão da seguinte maneira:
A equação da linha CD é y = 2x - 2. Como você escreve uma equação de uma linha paralela à linha CD na forma de interseção de declive que contém o ponto (4, 5)?
Y = -2x + 13 Veja a explicação, esta é uma pergunta de resposta longa.CD: "" y = -2x-2 Paralelo significa que a nova linha (chamaremos de AB) terá o mesmo declive que o CD. "" m = -2:. y = -2x + b Agora conecte o ponto dado. (x, y) 5 = -2 (4) + b Resolva para b. 5 = -8 + b 13 = b Portanto, a equação para AB é y = -2x + 13 Agora, verifique y = -2 (4) +13 y = 5 Portanto, (4,5) está na linha y = -2x + 13
A equação da linha é -3y + 4x = 9. Como você escreve a equação de uma linha que é paralela à linha e passa pelo ponto (-12,6)?
Y-6 = 4/3 (x + 12) Nós estaremos usando a forma de gradiente de ponto já que já temos um ponto no qual a linha irá (-12,6) e a palavra paralela significa que o gradiente das duas linhas deve ser o mesmo. Para encontrar o gradiente da linha paralela, devemos encontrar o gradiente da linha que é paralela a ela. Esta linha é -3y + 4x = 9, que pode ser simplificada em y = 4 / 3x-3. Isso nos dá o gradiente de 4/3 Agora para escrever a equação que colocamos nesta fórmula y-y_1 = m (x-x_1), onde (x_1, y_1) são o ponto que eles percorrem e m é o gradiente.
A linha L tem a equação 2x-3y = 5 e a linha M passa pelo ponto (2, 10) e é perpendicular à linha L. Como você determina a equação para a linha M?
Na forma de declive, a equação da linha M é y-10 = -3 / 2 (x-2). Na forma de interseção de inclinação, é y = -3 / 2x + 13. Para encontrar a inclinação da linha M, devemos primeiro deduzir a inclinação da linha L. A equação da linha L é 2x-3y = 5. Isto está na forma padrão, que não nos diz diretamente a inclinação de L. Nós podemos rearranjar esta equação, entretanto, na forma de interseção de inclinação resolvendo para y: 2x-3y = 5 cor (branco) (2x) -3y = 5-2x "" (subtrair 2x de a