Responda:
Explicação:
A soma é: número de termos
O número de termos no nosso exemplo é
O termo médio é o mesmo que a média do primeiro e último termo (uma vez que se trata de uma sequência aritmética), a saber:
#(1+100)/2 = 101/2#
Assim:
# 1 + 2 + … + 99 + 100 = 100xx (1 + 100) / 2 = 50xx101 = 5050 #
Outra maneira de ver isso é:
#1+2+…+99+100#
# = {:(cor (branco) (00) 1 + cor (branco) (00) 2 + … + cor (branco) (0) 49 + cor (branco) (0) 50+), (100+ cor (branco) (0) 99 + … + cor (branco) (0) 52 + cor (branco) (0) 51):} #
# = {: underbrace (101 + 101 + … + 101 + 101) _ "50 vezes":} #
# = 101xx50 = 5050 #
Três inteiros ímpares consecutivos são tais que o quadrado do terceiro inteiro é 345 menor que a soma dos quadrados dos dois primeiros. Como você encontra os inteiros?
Existem duas soluções: 21, 23, 25 ou -17, -15, -13 Se o menor inteiro é n, então os outros são n + 2 e n + 4 Interpretando a questão, temos: (n + 4) ^ 2 = n ^ 2 + (n + 2) ^ 2-345 que se expande para: n ^ 2 + 8n + 16 = n ^ 2 + n ^ 2 + 4n + 4 - 345 cores (branco) (n ^ 2 + 8n +16) = 2n ^ 2 + 4n-341 Subtraindo n ^ 2 + 8n + 16 de ambas as extremidades, encontramos: 0 = n ^ 2-4n-357 cor (branco) (0) = n ^ 2-4n + 4 -361 cor (branco) (0) = (n-2) ^ 2-19 ^ 2 cor (branco) (0) = ((n-2) -19) ((n-2) +19) cor (branco ) (0) = (n-21) (n + 17) Então: n = 21 "" ou "" n = -17 e os trê
Conhecendo a fórmula para a soma dos N inteiros a) qual é a soma dos primeiros N inteiros quadrados consecutivos, Sigma_ (k = 1) ^ N k ^ 2 = 1 ^ 2 + 2 ^ 2 + cdots + (N-1 ) ^ 2 + N ^ 2? b) Soma dos primeiros N inteiros do cubo consecutivos Sigma_ (k = 1) ^ N k ^ 3?
Para S_k (n) = soma_ {i = 0} ^ ni ^ k S_1 (n) = (n (n + 1)) / 2 S_2 (n) = 1/6 n (1 + n) (1 + 2 n ) S_3 (n) = ((n + 1) ^ 4- (n + 1) -6S_2 (n) -4S_1 (n)) / 4 Temos sum_ {i = 0} ^ ni ^ 3 = sum_ {i = 0} ^ n (i + 1) ^ 3 - (n + 1) ^ 3 sum_ {i = 0} ^ ni ^ 3 = sum_ {i = 0} ^ ni ^ 3 + 3sum_ {i = 0} ^ ni ^ 2 + 3sum_ {i = 0} ^ ni + sum_ {i = 0} ^ n 1- (n + 1) ^ 3 0 = 3sum_ {i = 0} ^ ni ^ 2 + 3sum_ {i = 0} ^ ni + sum_ {i = 0} ^ n 1- (n + 1) ^ 3 resolvendo para sum_ {i = 0} ^ ni ^ 2 sum_ {i = 0} ^ ni ^ 2 = (n + 1) ^ 3 / 3- (n + 1) / 3-sum_ {i = 0} ^ ni mas sum_ {i = 0} ^ ni = ((n + 1) n) / 2 então sum_ {i = 0} ^ ni ^ 2 = (n +1) ^
"Lena tem dois inteiros consecutivos.Ela percebe que sua soma é igual à diferença entre seus quadrados. Lena pega outros 2 inteiros consecutivos e percebe a mesma coisa. Prove algebricamente que isso é verdade para quaisquer 2 inteiros consecutivos?
Por favor, consulte a Explicação. Lembre-se de que os inteiros consecutivos diferem em 1. Portanto, se m for um inteiro, então, o número inteiro seguinte deve ser n + 1. A soma desses dois inteiros é n + (n + 1) = 2n + 1. A diferença entre seus quadrados é (n + 1) ^ 2-n ^ 2, = (n ^ 2 + 2n + 1) -n ^ 2, = 2n + 1, como desejado! Sinta a alegria das matemáticas.