Responda:
A agricultura sistemática refere-se a qualquer tipo de agricultura que é feita de forma propositada e ordenada.
Explicação:
A agricultura sistemática refere-se a qualquer tipo de agricultura que é feita de forma propositada e ordenada. Você poderia argumentar que a agricultura é, por sua própria definição, sistemática. A agricultura é a produção de culturas ou gado para alimentação ou outros produtos, como ovos ou lã.
A agricultura desenvolveu-se em vários lugares do mundo em momentos ligeiramente diferentes. É geralmente aceite que começou durante o que é referido como a Revolução Neolítica. Esta foi uma época em que os humanos começaram a se estabelecer permanentemente.
Porque eles não estavam mais seguindo manadas de animais ou se movendo com a mudança das estações conforme certas espécies floresciam, eles precisavam encontrar outras maneiras de obter sua comida. A agricultura foi uma solução. Os humanos começaram a mudar e controlar seu próprio ambiente para produzir bens e materiais necessários.
Para sobre a história e desenvolvimento da agricultura, confira este recurso da National Geographic.
O par ordenado (2, 10), é uma solução de uma variação direta, como você escreve a equação de variação direta, então graficamente sua equação e mostra que a inclinação da linha é igual à constante de variação?
Y = 5x "dado" ypropx "then" y = kxlarrcolor (azul) "equação para variação direta" "onde k é a constante de variação" "para encontrar k use o ponto de coordenada dado" (2,10) y = kxrArrk = y / x = 10/2 = 5 "equação é" cor (vermelho) (barra (ul (| cor (branco) (2/2) cor (preto) (y = 5x) cor (branco) (2/2) |))) y = 5x "tem a forma" y = mxlarrcolor (azul) "m é a inclinação" rArry = 5x "é uma linha reta passando pela origem" "com declive m = 5" graph {5x [-10 ,
O gráfico de h (x) é mostrado. O gráfico parece ser contínuo em, onde a definição muda. Mostrar que h é de fato contínuo ao encontrar os limites esquerdo e direito e mostrar que a definição de continuidade é satisfeita?
Por favor, consulte a Explicação. Para mostrar que h é contínuo, precisamos verificar sua continuidade em x = 3. Nós sabemos que, h será cont. em x = 3, se e somente se, lim_ (x para 3-) h (x) = h (3) = lim_ (x para 3+) h (x) ............ ................... (ast). Como x para 3-, x lt 3:. h (x) = - x ^ 2 + 4x + 1. : lim_ (x para 3-) h (x) = lim_ (x para 3 -) - x ^ 2 + 4x + 1 = - (3) ^ 2 + 4 (3) +1, limite lim_ (x para 3-) h (x) = 4 ............................................ .......... (ast ^ 1). Similarmente, lim_ (x a 3+) h (x) = lim_ (x a 3+) 4 (0,6) ^ (x-3) = 4 (0,6) ^ 0. rArr lim_ (x a
Qual afirmação melhor descreve a equação (x + 5) 2 + 4 (x + 5) + 12 = 0? A equação é quadrática na forma porque pode ser reescrita como uma equação quadrática com a substituição u = (x + 5). A equação é quadrática em forma porque quando é expandida,
Como explicado abaixo, a substituição de u irá descrevê-lo como quadrático em u. Para quadrática em x, sua expansão terá a maior potência de x como 2, melhor descreve-a como quadrática em x.