A velocidade de uma partícula que se move ao longo do eixo x é dada como v = x ^ 2 - 5x + 4 (em m / s), onde x denota a coordenada x da partícula em metros. Encontre a magnitude da aceleração da partícula quando a velocidade da partícula é zero?
Uma velocidade determinada v = x ^ 2 5x + 4 Aceleração a - = (dv) / dt: .a = d / dt (x ^ 2 5x + 4) => a = (2x (dx) / dt 5 (dx) / dt) Também sabemos que (dx) / dt- = v => a = (2x 5) v em v = 0 acima da equação se torna a = 0
A aceleração de uma partícula ao longo de uma linha reta é dada por a (t) = 48t ^ 2 + 2t + 6. Sua velocidade inicial é igual a -3cm / s e sua posição inicial é de 1 cm. Encontre sua função de posição s (t). A resposta é s (t) = 4t ^ 4 + 1 / 3t ^ 3 + 3t ^ 2-3t + 1, mas não consigo descobrir?
"Ver explicação" a = {dv} / dt => v = int a (t) dt = 16 t ^ 3 + t ^ 2 + 6 t + C v (0) = v_0 = -3 => C = -3 => v = 16 t ^ 3 + t ^ 2 + 6 t - 3 v = {ds} / dt "(v = velocidade) => s = int v (t) dt = 4 t ^ 4 + t ^ 3 / 3 + 3 t ^ 2 - 3 t + C s (0) = s_0 = 1 => C = 1 => s (t) = 4 t ^ 4 + t ^ 3/3 + 3 t ^ 2 - 3 t + 1
Uma partícula se move ao longo do eixo x de tal maneira que sua posição no tempo t é dada por x (t) = (2-t) / (1-t). Qual é a aceleração da partícula no tempo t = 0?
2 "ms" ^ - 2a (t) = d / dt [v (t)] = (d ^ 2) / (dt ^ 2) [x (t)] x (t) = (2-t) / (1-t) v (t) = d / dt [(2-t) / (1-t)] = ((1-t) d / dt [2-t] - (2-t) d / dt [1-t]) / (1-t) ^ 2 = ((1-t) (- 1) - (2-t) (- 1)) / (1-t) ^ 2 = (t-1 + 2-t) / (1-t) ^ 2 = 1 / (1-t) ^ 2 a (t) = d / dt [(1-t) ^ - 2] = - 2 (1-t) ^ - 3 * d / dt [1-t] = - 2 (1-t) ^ - 3 (-1) = 2 / (1-t) ^ 3 a (0) = 2 / (1-0) ^ 3 = 2/1 ^ 3 = 2/1 = 2 "ms" ^ - 2