O triângulo A tem lados de comprimentos de 32, 48 e 64. O triângulo B é semelhante ao triângulo A e tem um lado de comprimento 8. Quais são os possíveis comprimentos dos outros dois lados do triângulo B?

O triângulo A tem lados de comprimentos de 32, 48 e 64. O triângulo B é semelhante ao triângulo A e tem um lado de comprimento 8. Quais são os possíveis comprimentos dos outros dois lados do triângulo B?
Anonim

Responda:

Triângulo A:#32, 48, 64#

Triângulo B: #8, 12, 16#

Triângulo B:#16/3, 8, 32/3#

Triângulo B:#4, 6, 8#

Explicação:

Dado o triângulo A:#32, 48, 64#

Deixe o triângulo B ter lados x, y, z, então, use proporção e proporção para encontrar os outros lados.

Se o primeiro lado do triângulo B for x = 8, encontre y, z

resolver por y:

# y / 48 = 8/32 #

# y = 48 * 8/32 #

# y = 12 #

```````````````````````````````````````

resolver para z:

# z / 64 = 8/32 #

# z = 64 * 8/32 #

# z = 16 #

Triângulo B: #8, 12, 16#

o resto é o mesmo para o outro triângulo B

se o segundo lado do triângulo B for y = 8, encontre xez

resolver por x:

# x / 32 = 8/48 #

# x = 32 * 8/48 #

# x = 32/6 = 16/3 #

resolver para z:

# z / 64 = 8/48 #

# z = 64 * 8/48 #

# z = 64/6 = 32/3 #

Triângulo B:#16/3, 8, 32/3#

~~~~~~~~~~~~~~~~~~~~

Se o terceiro lado do triângulo B for z = 8, encontre x e y

# x / 32 = 8/64 #

# x = 32 * 8/64 #

# x = 4 #

resolver por y:

# y / 48 = 8/64 #

# y = 48 * 8/64 #

# y = 6 #

Triângulo B:#4, 6,8#

Deus abençoe … Espero que a explicação seja útil.