Responda:
Explicação:
Nos é dado:
Usando
Usando
Usando
Dividindo a fração (
Separando as integrais somadas:
A segunda integral é simplesmente
Deixei
Usando
Integrando (a constante arbitrária
Substituindo de volta em termos de
Responda:
Explicação:
Começamos usando a seguinte identidade de logaritmo:
Aplicando isso à integral, obtemos:
Para avaliar a integral restante, usamos integração por partes:
eu deixarei
Podemos então aplicar a integração pela fórmula de peças para obter:
Como temos a integral em ambos os lados do sinal de igual, podemos resolvê-lo como uma equação:
Conectando de volta à expressão original, recebemos nossa resposta final:
Qual é a integral de int ((x ^ 2-1) / sqrt (2x-1)) dx?
Int (x ^ 2-1) / sqrt (2x-1) dx = 1/20 (2x-1) ^ (5/2) +1/6 (2x-1) ^ (3/2) -3 / 4sqrt (2x-1) + C Nosso grande problema nessa integral é a raiz, então queremos nos livrar dela. Podemos fazer isso introduzindo uma substituição u = sqrt (2x-1). A derivada é então (du) / dx = 1 / sqrt (2x-1) Então nós nos dividimos (e lembre-se, dividir por um recíproco é o mesmo que multiplicar apenas pelo denominador) para integrar com respeito a u: int ( x ^ 2-1) / sqrt (2x-1) dx = int (x ^ 2-1) / cancelar (sqrt (2x-1)) cancelar (sqrt (2x-1)) du = int x ^ 2-1 du Agora tudo o que precisamos faz
Qual é a integral de int (1 + e ^ (2x)) ^ (1/2) dx?
1/2 [-ln (abs (sqrt (1 + e ^ (2x)) + 1)) + ln (abs (sqrt (1 + e ^ (2x)) - 1))] + sqrt (1 + e ^ (2x)) + C Primeiro nós substituímos: u = e ^ (2x) +1; e ^ (2x) = u-1 (du) / (dx) = 2e ^ (2x); dx = (du) / ( 2e ^ (2x)) intsqrt (u) / (2e ^ (2x)) du = intsqrt (u) / (2 (u-1)) du = 1 / 2intsqrt (u) / (u-1) du Executar uma segunda substituição: v ^ 2 = v = sqrt (u) 2v (dv) / (du) = 1; du = 2vdv 1 / 2intv / (v ^ 2-1) 2vdv = intv ^ 2 / (v ^ 2 -1) dv = int1 + 1 / (v ^ 2-1) dv Dividir usando frações parciais: 1 / ((v + 1) (v-1)) = A / (v + 1) + B / (v- 1) 1 = A (v-1) + B (v + 1) v = 1: 1 = 2B, B = 1/2 v = -
Qual é a diferença entre uma antiderivada e uma integral?
Não há diferenças, as duas palavras são sinônimas.