Responda:
Quarto quadrante
Explicação:
Pontos de coordenadas são marcados como
O 1º quadrante (superior direito)
O segundo quadrante (superior esquerdo)
O terceiro quadrante (canto inferior esquerdo)
O quarto quadrante (canto inferior direito)
O ponto médio do segmento AB é (1, 4). As coordenadas do ponto A são (2, -3). Como você encontra as coordenadas do ponto B?
As coordenadas do ponto B são (0,11) Ponto médio de um segmento, cujos dois pontos finais são A (x_1, y_1) e B (x_2, y_2) é ((x_1 + x_2) / 2, (y_1 + y_2) / 2) como A (x_1, y_1) é (2, -3), temos x_1 = 2 e y_1 = -3 e um ponto médio é (1,4), temos (2 + x_2) / 2 = 1 ou seja, 2 + x_2 = 2 ou x_2 = 0 (-3 + y_2) / 2 = 4 ie -3 + y_2 = 8 ou y_2 = 8 + 3 = 11 Portanto, as coordenadas do ponto B são (0,11)
Gregory desenhou um retângulo ABCD em um plano de coordenadas. O ponto A está em (0,0). O ponto B está em (9,0). O ponto C está em (9, -9). O ponto D está em (0, -9). Encontre o tamanho do CD lateral?
Lado CD = 9 unidades Se ignorarmos as coordenadas y (o segundo valor em cada ponto), é fácil dizer que, como o CD lateral começa em x = 9 e termina em x = 0, o valor absoluto é 9: | 0 - 9 | = 9 Lembre-se de que as soluções para valores absolutos são sempre positivas Se você não entende por que isso acontece, você também pode usar a fórmula de distância: P_ "1" (9, -9) e P_ "2" (0, -9 ) Na seguinte equação, P_ "1" é C e P_ "2" é D: sqrt ((x_ "2" -x_ "1") ^ 2+ (y_ "2" -y_
O ponto A está em (-2, -8) e o ponto B está em (-5, 3). O ponto A é girado (3pi) / 2 no sentido horário sobre a origem. Quais são as novas coordenadas do ponto A e quanto mudou a distância entre os pontos A e B?
Vamos coordenada polar inicial de A, (r, teta) Dada a coordenada cartesiana inicial de A, (x_1 = -2, y_1 = -8) Assim, podemos escrever (x_1 = -2 = rcosthetaandy_1 = -8 = rsintheta) Após 3pi / 2 rotação no sentido horário a nova coordenada de A se torna x_2 = rcos (-3pi / 2 + teta) = rcos (3pi / 2-teta) = - rsintheta = - (- 8) = 8 y_2 = rsin (-3pi / 2 + teta ) = - rsin (3pi / 2-theta) = rcostheta = -2 Distância inicial de A de B (-5,3) d_1 = sqrt (3 ^ 2 + 11 ^ 2) = sqrt130 distância final entre a nova posição de A ( 8, -2) e B (-5,3) d_2 = sqrt (13 ^ 2 + 5 ^ 2) = sqrt194 Então Di