Responda:
Números são
Explicação:
Deixe os três números inteiros positivos ímpares consecutivos
três vezes a soma é
e produto de primeiro e segundo inteiros é
como o ex é
ou
ou
ou
e
como os números são positivos, eles são
O produto de dois inteiros ímpares consecutivos é 29 menor que 8 vezes sua soma. Encontre os dois inteiros. Resposta na forma de pontos emparelhados com o mais baixo dos dois inteiros primeiro?
(13, 15) ou (1, 3) Sejam x e x + 2 os números ímpares consecutivos, então Conforme a pergunta, temos (x) (x + 2) = 8 (x + x + 2) - 29 : x ^ 2 + 2x = 8 (2x + 2) - 29:. x ^ 2 + 2x = 16x + 16 - 29:. x ^ 2 + 2x - 16x - 16 + 29 = 0:. x ^ 2 - 14x + 13 = 0:. x ^ 2 -x - 13x + 13 = 0:. x (x - 1) - 13 (x - 1) = 0:. (x - 13) (x - 1) = 0:. x = 13 ou 1 Agora, CASO I: x = 13:. x + 2 = 13 + 2 = 15:. Os números são (13, 15). CASO II: x = 1:. x + 2 = 1+ 2 = 3:. Os números são (1, 3). Portanto, como há dois casos sendo formados aqui; o par de números pode ser ambos (13, 15) ou (1, 3).
A soma de três números é 4. Se o primeiro é duplicado e o terceiro é triplicado, a soma é dois menor que o segundo. Quatro a mais do que o primeiro adicionado ao terceiro são dois a mais que o segundo. Encontre os números?
1º = 2, 2º = 3, 3º = -1 Crie as três equações: Seja 1º = x, 2º = y e 3º = z. EQ. 1: x + y + z = 4 EQ. 2: 2x + 3z + 2 = y "" => 2x - y + 3z = -2 EQ. 3: x + 4 + z -2 = y "" => x - y + z = -2 Eliminar a variável y: EQ1. + EQ. 2: 3x + 4z = 2 EQ. 1 + EQ. 3: 2x + 2z = 2 Resolva para x eliminando a variável z multiplicando o EQ. 1 + EQ. 3 por -2 e adicionando ao EQ. 1 + EQ. 2: (-2) (EQ. 1 + EQ. 3): -4x - 4z = -4 "" 3x + 4z = 2 ul (-4x - 4z = -4) -x "" = -2 "" = > x = 2 Resolva para z colocando x em EQ. 2 e EQ. 3: EQ.
Três inteiros pares positivos consecutivos são tais que o produto do segundo e terceiro inteiros é vinte mais do que dez vezes o primeiro inteiro. Quais são esses números?
Deixe os números serem x, x + 2 e x + 4. Então (x + 2) (x + 4) = 10x + 20x ^ 2 + 2x + 4x + 8 = 10x + 20x ^ 2 + 6x + 8 = 10x + 20 x ^ 2 - 4x - 12 = 0 (x - 6) (x + 2) = 0 x = 6 e -2 Como o problema especifica que o inteiro deve ser positivo, temos que os números são 6, 8 e 10. Espero que isso ajude!