O que é (sqrt (5+) sqrt (3)) / (sqrt (3+) sqrt (3+) sqrt (5)) - (sqrt (5-) sqrt (3)) / (sqrt (3+) sqrt (3-) sqrt (5))?

O que é (sqrt (5+) sqrt (3)) / (sqrt (3+) sqrt (3+) sqrt (5)) - (sqrt (5-) sqrt (3)) / (sqrt (3+) sqrt (3-) sqrt (5))?
Anonim

Responda:

#2/7#

Explicação:

Nós levamos, # A = (sqrt5 + sqrt3) / (sqrt3 + sqrt3 + sqrt5) - (sqrt5-sqrt3) / (sqrt3 + sqrt3-sqrt5) #

# = (sqrt5 + sqrt3) / (2sqrt3 + sqrt5) - (sqrt5-sqrt3) / (2sqrt3-sqrt5) #

# = (sqrt5 + sqrt3) / (2sqrt3 + sqrt5) - (sqrt5-sqrt3) / (2sqrt3-sqrt5) #

# = ((sqrt5 + sqrt3) (2sqrt3-sqrt5) - (sqrt5-sqrt3) (2sqrt3 + sqrt5)) / ((2sqrt3 + sqrt5) (2sqrt3-sqrt5) #

# = ((2sqrt15-5 + 2 * 3-sqrt15) - (2sqrt15 + 5-2 * 3-sqrt15)) / ((2sqrt3) ^ 2- (sqrt5) ^ 2) #

# = (cancelar (2sqrt15) -5 + 2 * 3cancel (-sqrt15) - cancelar (2sqrt15) -5 + 2 * 3 + cancelar (sqrt15)) / (12-5) #

#=(-10+12)/7#

#=2/7#

Note que, se nos denominadores são

# (sqrt3 + sqrt (3 + sqrt5)) e (sqrt3 + sqrt (3-sqrt5)) #

então a resposta será mudada.