Qual é a forma cartesiana de r-teta = -2sin ^ 2theta-berço ^ 3theta?

Qual é a forma cartesiana de r-teta = -2sin ^ 2theta-berço ^ 3theta?
Anonim

Responda:

Conjunto:

# x = rcosθ #

# y = rsinθ #

A resposta é:

#sqrt (x ^ 2 + y ^ 2) -arccos (x / sqrt (x ^ 2 + y ^ 2)) = - 2x ^ 2 / (x ^ 2 + y ^ 2) -x ^ 3 / y ^ 3 #

Explicação:

De acordo com a seguinte imagem:

Conjunto:

# x = rcosθ #

# y = rsinθ #

Então nós temos:

# cosθ = x / r #

# sinθ = y / r #

# θ = arccos (x / r) = arcsin (y / r) #

# r = sqrt (x ^ 2 + y ^ 2) #

A equação se torna:

# r-θ = -2sin ^ 2θ-cot ^ 3θ #

# r-θ = -2sin ^ 2θ-cos ^ 3θ / sin ^ 3θ #

#sqrt (x ^ 2 + y ^ 2) -arccos (x / r) = - 2x ^ 2 / r ^ 2- (x ^ 3 / r ^ 3) / (y ^ 3 / r ^ 3) #

#sqrt (x ^ 2 + y ^ 2) -arccos (x / r) = - 2x ^ 2 / r ^ 2-x ^ 3 / y ^ 3 #

#sqrt (x ^ 2 + y ^ 2) -arccos (x / sqrt (x ^ 2 + y ^ 2)) = - 2x ^ 2 / sqrt (x ^ 2 + y ^ 2) ^ 2-x ^ 3 / y ^ 3 #

#sqrt (x ^ 2 + y ^ 2) -arccos (x / sqrt (x ^ 2 + y ^ 2)) = - 2x ^ 2 / (x ^ 2 + y ^ 2) -x ^ 3 / y ^ 3 #