
Responda:
Explicação:
Esta é sempre a fórmula para resolver a área de um trapézio, onde
Se fôssemos resolver para a área deste trapézio, seria
Você também pode vê-lo escrito como
Sidenote: Você deve ter notado que o
A área de um trapézio é de 60 pés quadrados. Se as bases do trapézio são 8 pés e 12 pés, qual é a altura?

A altura é de 6 pés. A fórmula para a área de um trapézio é A = ((b_1 + b_2) h) / 2 onde b_1 e b_2 são as bases e h é a altura. No problema, a seguinte informação é dada: A = 60 ft ^ 2, b_1 = 8ft, b_2 = 12ft Substituindo estes valores na fórmula dá ... 60 = ((8 + 12) h) / 2 Multiplique ambos os lados por 2. 2 * 60 = ((8 + 12) h) / 2 * 2 120 = ((20) h) / cancel2 * cancel2 120 = 20h Divida ambos os lados por 20 120/20 = (20h) / 20 6 = hh = 6 pés
Dois acordes paralelos de um círculo com comprimentos de 8 e 10 servem como bases de um trapézio inscrito no círculo. Se o comprimento de um raio do círculo é 12, qual é a maior área possível de um trapézio inscrito descrito?

72 * sqrt (2) + 9 * sqrt (119) ~ = 200.002 Considere as Figs. 1 e 2 Esquematicamente, poderíamos inserir um paralelogramo ABCD em um círculo, e sob a condição de que os lados AB e CD sejam cordas dos círculos, na forma da figura 1 ou figura 2. A condição que os lados AB e CD devem ser Os acordes do círculo implicam que o trapézio inscrito deve ser um isósceles porque as diagonais do trapézio (AC e CD) são iguais porque um chapéu BD = B chapéu AC = B hatD C = Um chapéu CD e a linha perpendicular a passagem AB e CD através do centro E divide este
Os comprimentos de dois lados paralelos de um trapézio são 10 cm e 15 cm. Os comprimentos dos outros dois lados são de 4 cm e 6 cm. Como você vai descobrir a área e as magnitudes de 4 ângulos do trapézio?

Então, a partir da figura, sabemos: h ^ 2 + x ^ 2 = 16 ................ (1) h ^ 2 + y ^ 2 = 36 .... ............ (2) e, x + y = 5 ................ (3) (1) - (2) => (x + y) (xy) = -20 => yx = 4 (usando eq. (3)) ..... (4) so, y = 9/2 e x = 1/2 e assim, h = sqrt63 / 2 A partir desses parâmetros, a área e os ângulos do trapézio podem ser obtidos facilmente.